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ABSTRACT
Citation networks have been thought to exhibit scale-free property
for many years; however, this assertion has been doubted recently.
In this paper, we conduct extensive experiments to resolve this
controversial issue. We firstly demonstrate the scale-free property
in scale-free networks sampled from the popular Barabasi-Albert
(BA) model. To this end, we employ a merged rank distribution,
which is divided into outliers, power-law segment, and non-power-
law data, to characterize network degrees, and propose a random
sample consensus (RANSAC)-based method to identify power-law
segments from merged rank distributions, and use the Kolmogorov-
Smirnov (KS) test to examine the scale-free property in power-law
segments. Subsequently, we apply the samemethods to examine the
scale-free property in real-world citation networks. Experimental
results confirm the scale-free property in citation networks and
attribute previous skepticism to the presence of outliers.
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1 INTRODUCTION
Citation networks has served as invaluable tools for analyzing
the impact of scientific discoveries, researchers, and publishing
venues [11]. Their significance underscores the importance of un-
derstanding their properties, amongwhich a controversial one is the
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scale-free property. A network is said to exhibit scale-free property
if the distribution of either its degrees or its nodes can be character-
ized by a power-law model. Citation networks have been thought
to exhibit scale-free property for many years [1, 7–9]; however, a
recent research casted doubt on this longstanding assertion [4].

In this paper, we conduct extensive experiments to resolve this
controversial issue. Specifically, we firstly demonstrate the scale-
free property in networks sampled from scale-free models through a
three-step process: (1) employing amerged rank distribution to char-
acterize the degrees of these sampled scale-free networks and parti-
tioning the merged rank distribution into three categories:outliers;
representing the highest-degree nodes deviating from the fitted
power-law line; power-law segment, indicating a well-fitted seg-
ment with a power-law; and non-power-law data, comprising nodes
with degrees smaller than a threshold and deviating from the fitted
power-law line; (2) introducing a method based on random sam-
ple consensus (RANSAC) [2] to identify power-law segments from
these merged rank distributions; and (3) utilizing the Kolmogorov-
Smirnov (KS) test to examine the scale-free property in these identi-
fied power-law segments. After demonstrating the scale-free prop-
erty in sampled scale-free networks, we apply the same methods
to examine the scale-free property in real-world citation networks.
Our experimental results on nine versions of citation networks,
spanning over a decade, clearly demonstrate the presence of scale-
free property in citation networks. Furthermore, our experiments
indicate that it is the outliers that lead Golosovsky (2017) [4] to
argue against the scale-free nature of citation networks.

Compared to previous studies, our research presents several dis-
tinct contributions. Firstly, while previous studies predominantly
focus on examining the scale-free property through degree distribu-
tions of citation networks, our research advocates for analyzing the
scale-free property in a merged rank distribution, which we argue
to be a more effective strategy. Secondly, while prior studies tend
to characterize the entire distribution or its long tails in networks
using a power-law model, our research suggests that the scale-free
property occurs primarily within a specific segment of citation
network distributions. Thirdly, whereas previous studies typically
examine the scale-free property solely in real-world citation net-
works, our research advocates a two-step examination: firstly con-
firming the scale-free property in sampled scale-free networks and
subsequently examining it in real-world citation networks.

2 METHODOLOGY
2.1 Merged Rank Distribution
In a network with 𝑛 nodes, we sort the 𝑛 nodes by their degrees in
descending order and let 𝑘𝑟 denote the degree of the 𝑟 -th node or let
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Figure 1: Rank distribution (“Rank”) and merged rank dis-
tribution (“Merged Rank”) of a sampled scale-free network

𝑝 (𝑟 ) denote the proportion of degrees of the 𝑟 -th node. The degrees
of the network are deemed to follow a rank power-law distribution
if the data points {(𝑟, 𝑘𝑟 )} or {(𝑟, 𝑝 (𝑟 )} (where 1 ≤ 𝑟 ≤ 𝑛) can be
characterized by Eq. (1) or Eq. (2), respectively:

𝑘𝑟 = 𝐶 · 𝑟−𝛽 (1)
𝑝 (𝑟 ) = 𝐶 ′ · 𝑟−𝛽 (2)

where 𝛽 > 0 represents the scaling exponent while 𝐶 > 0 and
𝐶 ′ > 0 are normalized constants.

In empirical networks, it is common to encounter data points
in which different 𝑟 values have equal 𝑘𝑟 or 𝑝 (𝑟 ) values; namely
∃𝑟𝑖 ≠ 𝑟 𝑗 ⇒ 𝑘𝑟𝑖 = 𝑘𝑟 𝑗 or 𝑝 (𝑟𝑖 ) = 𝑝 (𝑟 𝑗 ). This violates the strictly
decreasing property of power-law functions like Eq. (1) or Eq. (2):
∀𝑟𝑖 < 𝑟 𝑗 ⇒ 𝑘𝑟𝑖 > 𝑘𝑟 𝑗 or 𝑝 (𝑟𝑖 ) > 𝑝 (𝑟 𝑗 ). However, these data points
with equal 𝑘𝑟 values appear with consecutive 𝑟 values. Suppose
the 𝑟 values that correspond to all equal 𝑘𝑟 values range from 𝑟𝑠
to 𝑟𝑒 , we can merge all of them into a single data point (𝑟𝑐 , 𝑘𝑟 ),
where 𝑟𝑐 =

√
𝑟𝑠 · 𝑟𝑒 represents the center of 𝑟𝑠 and 𝑟𝑒 on double-

logarithmic axes or the geometric average on original axes.
{(𝑟𝑐 , 𝑘𝑟 )} or {(𝑟𝑐 , 𝑝 (𝑟𝑐 ))} is termed the “merged rank distribu-

tion” (referred to as “mRankDist”).1 Figure 1 illustrates the RankDist
and the mRankDist of a network sampled from the Barabasi-Albert
(BA) model. Unlike RankDist, which generally lacks the strictly
decreasing property in empirical networks, mRankDist consistently
exhibits this property. In line with [12], we observe that not all high-
degree nodes in citation networks conform to a power-law distribu-
tion. We also observe that the mRankDist can be divided into three
distinct segments: outliers, power-law segment, non-power-law data.
The power-law segment represents a portion of the mRankDist that
aligns well with a power-law model. Outliers denote the highest-
degree nodes deviating from the fitted power-law line, while non-
power-law data comprises nodes with degrees smaller than a desig-
nated threshold 𝑘𝑚𝑖𝑛 and deviating from the fitted power-law line.
As depicted in Figure 1, the delineation between the three segments
within mRankDist is marked by data points 𝑡𝑠 and 𝑡𝑒 .

It is worth noting that when each distinct 𝑟 corresponds to a
unique 𝑘𝑟 or 𝑝 (𝑟 ), the mRankDist and RankDist are the same.

2.2 RANSAC: Identifying Power-Law Segments
from Merged Rank Distributions

We propose a method based on RANSAC [2] to identify power-law
segments from merged rank distributions. Suppose the mRankDist
is represented by 𝑝 (𝑟𝑐 ) = 𝐴 · 𝑟−𝛽𝑐 , then it is equivalent to Eq. (3):

𝑠 = 𝛽 · 𝑡 + 𝑎 (3)
1We designate the normal rank distribution(s) as “RankDist” or “nRankDist” while using
“mRankDist” specifically for the merged rank distribution(s).

Algorithm 1: Identifying Power-Law Segment

Input: {(𝑡𝑖 , 𝑠𝑖 )}𝑁1 , 𝛽 , 𝑎, 𝑠𝑖 ← 𝑡𝑖 × 𝛽 + 𝑎, 𝛿𝑒𝑟𝑟 , 𝛿𝑐𝑜𝑢𝑛𝑡
Output: 𝑡𝑠 , 𝑡𝑒
Initiate: 𝑡𝑠 = 1, 𝑡𝑒 = 𝑁 , 𝛿𝑐𝑜𝑢𝑛𝑡 = 10, 𝛿𝑒𝑟𝑟 = 0.1

1 for 𝑖 ← 1 to 𝑁 do
2 𝑓 𝑙𝑎𝑔← FALSE
3 for 𝑗 ← 𝑖 to 𝑖 + 𝛿𝑐𝑜𝑢𝑛𝑡 do
4 if |𝑠 𝑗 − 𝑠 𝑗 |/𝑠 𝑗 > 𝛿𝑒𝑟𝑟 then
5 𝑓 𝑙𝑎𝑔← TRUE and break
6 if 𝑓 𝑙𝑎𝑔 is TRUE then
7 𝑡𝑠 ← 𝑡𝑖 and break
8 for 𝑖 ← 𝑁 to 1 do
9 𝑓 𝑙𝑎𝑔← FALSE

10 for 𝑗 ← 𝑖 to 𝑖 − 𝛿𝑐𝑜𝑢𝑛𝑡 do
11 if |𝑠 𝑗 − 𝑠 𝑗 |/𝑠 𝑗 > 𝛿𝑒𝑟𝑟 then
12 𝑓 𝑙𝑎𝑔← TRUE and break
13 if 𝑓 𝑙𝑎𝑔 is TRUE then
14 𝑡𝑒 ← 𝑡𝑖 and break

where 𝑠 = − log 𝑝 (𝑟𝑐 ), 𝑡 = log 𝑟𝑐 , and 𝑎 = − log𝐴.
Given a set of data points {(𝑡𝑖 , 𝑠𝑖 )}, where 1 ≤ 𝑖 ≤ 𝑁 , character-

ized by a line as described in Eq. (3), the RANSAC algorithm aims
to estimate the parameters (i.e., 𝛽 and 𝑎) of the power-law model
and identify the power-law segment (which is separated by 𝑡𝑠 and
𝑡𝑒 ). Initially, the classic RANSAC algorithm is employed to estimate
𝛽 and 𝑎. Subsequently, an algorithm outlined in Algorithm 1 is
designed to identify the power-law segment. This algorithm begins
by setting error and count thresholds, denoted as 𝛿𝑒𝑟𝑟 and 𝛿𝑐𝑜𝑢𝑛𝑡
respectively, then iteratively scans the mRankDist from start to
finish. At each data point, it checks if the subsequent points, say
𝛿𝑐𝑜𝑢𝑛𝑡 , confom to the linear model within the error threshold. The
first point meeting this criterion is marked as the starting point 𝑡𝑠 of
the segment. A similar reverse iteration is performed to determine
the segment’s end point 𝑡𝑒 , effectively isolating the segment that
best fits the linear model while excluding outliers.

2.3 Goodness-of-Fit Testing
In line with prior studies [3, 12, 13], we utilize the KS test [5, 6] to
examine the goodness-of-fit. The KS test is a nonparametric method
that evaluates the null hypothesis𝐻0: a sample with𝑁 observations
is drawn from a hypothesized population. The KS statistic is defined
by Eq. (4):

𝐷𝑛 = sup
𝑥
|𝐹𝑛 (𝑥) − 𝐹 (𝑥) | (4)

where 𝐹𝑛 (𝑥) represents the cumulative density function (CDF) of
the sample, 𝐹 (𝑥) denotes the CDF of hypothesized population, and
𝑠𝑢𝑝𝑥 denotes the supremum of the set of distances.

We employ the critical KS statistic (𝐷𝛼
𝑛 ) with a significance

level of 𝛼 = 0.05 for hypothesis testing, as per the table provided
by Massey [6] (refer to its Table 1). Specifically, for sample sizes
𝑁 > 35, the critical KS statistic is defined as 𝐷0.05

𝑛 = 1.36√
𝑁
. For a

calculated value of 𝐷𝑛 , we compare it to 𝐷0.05
𝑛 : if 𝐷𝑛 > 𝐷0.05

𝑛 , then
reject 𝐻0; otherwise, accept 𝐻0. It is worth noting that while non-
rejection does not equate to acceptance, it is customary in this area
to consider non-rejection as indicative of acceptance.
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Table 1: Statistics of the nine versions of citation networks.
Nodes represent papers while edges represent citations.

Dataset Year # Nodes # Edges

DBLP-V3 2010 333,977 2,265,340
DBLP-V5 2011 982,768 24,288,367
DBLP-V6 2013 1,375,399 38,339,598
DBLP-V7 2014 517,577 4,001,021
DBLP-V8 2016 650,218 6,340,666
DBLP-V9 2017 33,726 1,618,844
DBLP-V10 2017 2,356,111 1,08,445,406
DBLP-V11 2019 2,973,396 67,170,765
DBLP-V12 2020 3,538,030 82,226,114

3 EXPERIMENTS
We conduct experiments to firstly demonstrate the scale-free prop-
erty in sampled scale-free networks and subsequently examine the
scale-free property in real-world citation networks.

3.1 Experimental Setup
3.1.1 Datasets. In our experiments, we utilize two types of datasets:
(1) sampled scale-free networks and (2) real-world citation networks.
For sampled scale-free datasets, we sample networks from the BA
model with different settings: 𝑛 = 104, 105, 106 and 𝑚 = 5, 10;
here 𝑛 denotes the number of total nodes while 𝑚 indicates the
number of edges added with each new node to the network. We
sample 500 networks for each (𝑛,𝑚) setting and focus on in-degree
networks, due to the directed nature of citations. For real-world
citation networks, we collect various versions of the DBLP citation
networks2 spanning over a decade [10]. Table 1 summarizes the
statistics of these citation networks.

3.1.2 State-of-the-art Baselines. We compare the fitting results of
our method to two state-of-the-art models: GA2019 [3] and 𝐿𝑆𝑎𝑣𝑔
[12]. GA2019 employs maximum-likelihood estimation while 𝐿𝑆𝑎𝑣𝑔
utilizes least-squares fitting to fit power-law distributions.

3.1.3 Implementation and Evaluation Metrics. GA2019 is applied
on RankDist, while both 𝐿𝑆𝑎𝑣𝑔 and our RANSAC-based method
are applied on mRankDist. For GA2019 and 𝐿𝑆𝑎𝑣𝑔 , the KS test is
performed on the entire distribution; while for RANSAC, the KS
test is conducted on both the identified power-law segment and
the entire mRankDist. In terms of evaluation metrics, we utilize the
KS test, as described in Section 2.3, to assess the goodness-of-fit.

3.2 Experimental Results
3.2.1 Results on Sampled Directed Scale-Free Networks. Table 2
reports the fitting and testing results of RANSAC, GA2019, and
𝐿𝑆𝑎𝑣𝑔 on rank distributions of sampled directed scale-free networks.
The table shows that RANSAC achieves the best 𝐷𝑠𝑒𝑔

𝑛 with all 500
accepts; by contrast, both GA2019 and 𝐿𝑆𝑎𝑣𝑔 reject all sampled net-
works as scale-free networks. This highlights RANSAC’s superior
performance over GA2019 and 𝐿𝑆𝑎𝑣𝑔 . Conversely, when consid-
ering outliers and non-power-law data, RANSAC identifies some

2https://www.aminer.org/citation

sampled networks as non-scale-free, suggesting the validity of seg-
menting mRankDist for scale-free networks. Furthermore, Figure 2
visually depicts examples of fitting to sampled scale-free networks,
displaying that scale-free property occurs in partial segments rather
than across the entire distributions.

3.2.2 Results on Real-World Citation Networks. Table 3 presents the
fitting and testing results of RANSAC, GA2019, and 𝐿𝑆𝑎𝑣𝑔 on rank
distributions of real-world citation networks. Notably, RANSAC suc-
cessfully identifies almost all power-law segments from mRankDist,
passing the KS test, with the exception of the DBLP-V9 network
due to its significantly smaller size compared to other networks.
This performance surpasses that of GA2019 and 𝐿𝑆𝑎𝑣𝑔 . Due to lim-
ited space, Figure 3 illustrates some of these fitting and testing
results. These results align with those observed in sampled scale-
free networks, as reported in Table 2 and depicted in Figure 2. This
consistency suggests the scale-free property inherent in citation
networks, with outliers and non-power-law data causing citation
networks to be non-scale-free.

4 CONCLUSION
In this paper, we resolve the controversial issue surrounding the
scale-free nature of citation networks. We achieve this by char-
acterizing network degrees through a merged rank distribution
with three distinct portions and identifying power-law segments
from merged rank distributions using a RANSAC-based method.
Experimental results on both sampled scale-free networks and real-
world citation networks conclusively demonstrate the presence of
scale-free property in citation networks.
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Table 2: Fitting and testing result of RANSAC, GA2019, and 𝐿𝑆𝑎𝑣𝑔 on rank distributions of sampled directed scale-free networks.
The reported results are based on the average of 500 sampled networks.𝐾𝑆 denotes the number of “accept/reject” results among
the 500 samplednetworks. ForRANSAC, after computing 𝛽 , theKS test is conducted on two sets of data points frommRankDist:
(1) the power-law segment (which is indicated by “𝑠𝑒𝑔”) and (2) all data points (“𝑎𝑙𝑙”).

(𝑛,𝑚) RANSAC GA2019 𝐿𝑆𝑎𝑣𝑔

𝛽 𝐷
𝑠𝑒𝑔
𝑛 𝐾𝑆𝑠𝑒𝑔 𝐷𝑎𝑙𝑙

𝑛 𝐾𝑆𝑎𝑙𝑙 𝛽 𝐷𝑛 KS 𝛽 𝐷𝑛 KS

(104, 5) 0.6121 0.0062 500/0 0.0173 500/0 0.6954 0.2605 0/500 0.4721 0.0264 0/500
(104, 10) 0.6237 0.0106 500/0 0.0306 118/382 0.6975 0.3250 0/500 0.4272 0.0398 0/500
(105, 5) 0.5665 0.0015 500/0 0.0051 493/7 0.6736 0.2740 0/500 0.4885 0.0083 0/500
(105, 10) 0.5734 0.0025 500/0 0.0092 377/123 0.6803 0.3335 0/500 0.4570 0.0138 0/500
(106, 5) 0.5402 0.0004 500/0 0.0014 500/0 0.6616 0.2839 0/500 0.4986 0.0022 0/500
(106, 10) 0.5448 0.0005 500/0 0.0026 452/48 0.6695 0.3415 0/500 0.4797 0.0040 0/500

(a) n=104 , m=5 (b) n=104 , m=10 (c) n=105 , m=5 (d) n=105 , m=10 (e) n=106 , m=5

Figure 2: Examples of fitting and testing results of RANSAC, GA2019, and 𝐿𝑆𝑎𝑣𝑔 on rank distributions of sampled directed
scale-free networks (best viewed in color). The horizontal axis indicates ranks 𝑟 while the vertical one indicate 𝑝 (𝑟 ). For a
fitting by RANSAC, outliers, power-law segment, and non-power-law data are separated by the green and yellow data points.

Table 3: Fitting and testing result of RANSAC, GA2019, and 𝐿𝑆𝑎𝑣𝑔 on rank distributions of real-world citation networks. The
notations are consistent with those used in Table 2, with the exception that𝐾𝑆 here indicates the result of theKS test conducted
on individual networks.

(𝑛,𝑚) RANSAC GA2019 𝐿𝑆𝑎𝑣𝑔

𝛽 𝐷
𝑠𝑒𝑔
𝑛 𝐾𝑆𝑠𝑒𝑔 𝐷𝑎𝑙𝑙

𝑛 𝐾𝑆𝑎𝑙𝑙 𝛽 𝐷𝑛 𝐾𝑆 𝛽 𝐷𝑛 𝐾𝑆

DBLP-V3 0.5236 0.0012 accept 0.0028 reject 0.7012 0.3284 reject 0.4747 0.0043 reject
DBLP-V5 0.6278 0.0015 accept 0.0121 reject 0.7535 0.4832 reject 0.5494 0.0096 reject
DBLP-V6 0.6566 0.0014 accept 0.0186 reject 0.7592 0.4900 reject 0.5512 0.0121 reject
DBLP-V7 0.5342 0.0013 accept 0.0055 reject 0.7076 0.3541 reject 0.4200 0.0078 reject
DBLP-V8 0.5846 0.0017 accept 0.0070 reject 0.7375 0.3814 reject 0.4949 0.0122 reject
DBLP-V9 0.6336 0.0113 reject 0.0464 reject 0.6412 0.2527 reject 0.3816 0.0407 reject
DBLP-V10 0.6280 0.0008 accept 0.0085 reject 0.6631 0.4513 reject 0.5441 0.0066 reject
DBLP-V11 0.6233 0.0010 accept 0.0111 reject 0.7467 0.4788 reject 0.5282 0.0085 reject
DBLP-V12 0.6270 0.0007 accept 0.0100 reject 0.7499 0.4842 reject 0.5434 0.0077 reject

(a) DBLP-V5 (b) DBLP-V6 (c) DBLP-V7 (d) DBLP-V11 (e) DBLP-V12

Figure 3: Fitting and testing results of RANSAC, GA2019, and 𝐿𝑆𝑎𝑣𝑔 on rank distributions of real-world citation networks

544


	Abstract
	1 Introduction
	2 Methodology
	2.1 Merged Rank Distribution
	2.2 RANSAC: Identifying Power-Law Segments from Merged Rank Distributions
	2.3 Goodness-of-Fit Testing

	3 Experiments
	3.1 Experimental Setup
	3.2 Experimental Results

	4 Conclusion
	Acknowledgments
	References



