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ABSTRACT
Ordinary least-squares estimation is proved to be the best linear

unbiased estimator according to the Gauss-Markov theorem. In

the last two decades, however, some researchers criticized that

least-squares was substantially inaccurate in fitting power-law dis-

tributions; such criticism has caused a strong bias in research com-

munity. In this paper, we conduct extensive experiments to rebut

that such criticism is complete nonsense. Specifically, we sample

different sizes of discrete and continuous data from power-lawmod-

els, showing that even though the long-tailed noises are sampled

from power-law models, they cannot be treated as power-law data.

We define the correct way to bin continuous power-law data into

data points and propose an average strategy for least-squares to

fit power-law distributions. Experiments on both simulated and

real-world data show that our proposed method fits power-law data

perfectly. We uncover a fundamental flaw in the popular method

proposed by Clauset et al. [12]: it tends to discard the majority of

power-law data and fit the long-tailed noises. Experiments also

show that the reverse cumulative distribution function is a bad idea

to plot power-law data in practice because it usually hides the true

probability distribution of data. We hope that our research can clean

up the bias about least-squares fitting power-law distributions.

Source code can be found at https://github.com/xszhong/LSavg.
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1 INTRODUCTION
Power-law distributions have been reported to appear in a variety

of natural and societal systems [1, 2, 5, 7, 8, 15, 16, 22, 23, 25, 27, 31–

36, 41, 43, 45, 55, 57, 59, 61]. It is important to correctly estimate

power-law models so as to understand the characteristics of these

systems. Ordinary least-squares estimation (LSE) is proved to be the

best linear unbiased estimator with minimum variance among the

class of linear unbiased estimators according to the Gauss-Markov

theorem [14, 30, 44] (the Gauss-Markov theorem can be easily found

in a textbook about regression analysis). In the last two decades,

however, some researchers conducted inappropriate experiments

to criticize LSE for being substantially inaccurate in fitting power-

law distributions to data [6, 11, 12, 26, 38, 56]. Such criticism has

caused a strong bias in research community about using least-

squares to estimate parameters of power-law models. Recently,

researchers who are concerned with power-law distributions tend

to start their research with statements like these: “This naive form

of linear regression generates significant errors under relatively

common conditions and gives no warning of its mistakes” [54],

“intrinsic limitations of the least square (LS) fits to logarithmically

scaled data” [29], and similar others [4, 9, 17, 18, 20, 21, 46, 58].What

is even worse is that some reviewers may start their reviews on a

submission with comments like this: “This approach (authors note:

namely LSE) to fitting power-law distributions to data is entirely un-

reliable, and its results cannot be trusted.” In this paper, we conduct

extensive experiments to rebut such criticism, and experimental

results demonstrate that such criticism is complete nonsense and

that the popular CSN2009 method proposed by Clauset et al. [12]

is actually misleading and fundamentally flawed.

Specifically, we sample both discrete and continuous data from

power-law models (see Eq. (1)) with scaling exponent α = 2.5

and minimal value xmin = 1, similar to the criticizers [6, 11, 12,

26, 38, 56]; but unlike those criticizers who only sample data in

a specific size (e.g., 10
4
or 10

6
), we sample data in different sizes

from 10
3
to 10

8
so as to fully illustrate the characteristics of these

sampled data. The statistics of both discrete and continuous sampled

data shows that not all the data sampled from a power-law model

follow a power-law distribution and that the long tails of finite

samples are sampling noises and cannot be treated as power-law

data. Experiments also show that it is the long-tailed noises causing

the inaccuracy of LSE in fitting power-law distributions. Those

criticizers mistakenly treat the data problem as the model problem.

We propose an average strategy for ordinary LSE termed LSavд
to estimate parameters of power-law models (see Section 3.1). The

idea behind the average strategy is that if a set of data points per-

fectly follows a power-law distribution, then using any subset of

two or more data points can find the optimum slope of the line on
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doubly logarithmic system, and all these slopes and their arithmetic

average are equal. For a discrete sample, it is denoted by a set of

data points and we directly apply LSavд to these data points after

filtering out the long-tailed noises. For a continuous sample, we

firstly bin the sample into a set of data points by our proposed

binning method as described in Section 3.2 and then apply LSavд
to these data points after filtering out the long-tailed noises. Unlike

most previous research that use the centers of the bins, we use

the geometric averages of bins to precisely represent the binned

data. Experimental results demonstrate that our LSavд achieves

unbiased estimation of power-law exponents on sampled discrete

data and almost unbiased estimation on sampled continuous data.

To examine the goodness of power-law fit, we propose to use

the maximal statistic of the two-sample Kolmogorov-Smirnov (KS)

test [50, 51] among a large group of samples that are drawn from the

estimated power-law model as the threshold to determine whether

or not to accept the power-law hypothesis (see Section 3.3). Our

proposed method overcomes the problem of the traditional KS test

in mistakenly rejecting the hypothesis that two samples drawn

from the same power-law model follow the same distribution.

We apply our proposed estimationmethodLSavд and hypothesis-
testing method to real-world datasets and compare our methods

with the widely known CSN2009 [12]. Experiments demonstrate

that our methods successfully fit and identify power-law distribu-

tions to empirical data. By contrast, CSN2009 tends to discard the

majority of data and fit the long-tailed noises, and the hypothesis-

testing method proposed by Clauset et al. [12] mistakenly treats

the long-tailed noises as being well-fitted by power-law distribu-

tions. Experiments also demonstrate that the reverse cumulative

distribution function (rCDF) widely used to plot power-law data is

a bad idea in practice because it usually hides the true probability

density function (PDF) of data.

To summarize, wemake in this paper the following contributions.

• To the best of our knowledge, this paper is the first work to

conduct extensive experiments to rebut the criticism about

LSE in fitting power-law distributions. Experimental results

show that LSE fits power-law data perfectly. We hope that

our research can clean up the bias in the research community

about LSE fitting to power-law distributions.

• We propose an average strategy for LSE to fit power-law distri-

butions to data, and experiments demonstrate its remarkable

success in fitting power-law distributions to both simulated

power-law data and real-world data.

• We define the correct way to bin continuous power-law data

into data points for LSE to fit power-law distributions, which

has never been correctly reported in previous research.

• We find that the traditional KS test fails to examine whether

two power-law samples are drawn from the same distribution.

To resolve the problem, we propose to set a threshold derived

from a large group of generated power-law samples to ex-

amine the power-law hypothesis. Experiments on real-world

data demonstrate the effectiveness of our proposed method.

• We uncover a fundamental flaw in the widely known method

CSN2009 proposed by Clauset et al. [12]: it tends to discard

the majority of power-law data and fit the long-tailed noises.

Such flaw invalidates the reliability of all the research based

on CSN2009 and all those works need to be re-investigated.

2 RELATEDWORKS
Since there is no existing research rebutting the criticism about LSE

in fitting power-law distributions [6, 11, 12, 26, 38, 56], we analyze

previous research about fitting power-law distributions.

2.1 Parameter Estimation of Power-Law Model
2.1.1 Least-Squares Estimation. There are mainly two kinds of

binning methods used for LSE [19, 47, 53]: linear binning and loga-

rithmic binning. Linear binning bins observed data into fixed-width

histograms, and then plot the frequencies against the centers of the

bins [23, 24, 32, 36, 42]. By contrast, logarithmic binning uses loga-

rithmic bins that have fixed width on doubly logarithmic system.

Comparing with linear binning, logarithmic binning can reduce the

number of low-frequency bins [8, 28, 49].

Our analysis and those criticizers show that linear binning with

bin center representation on the whole data (including long-tailed

noises) results in substantially biased estimation. While logarithmic

binning obtains more accurate estimation, it cannot rule out the

long-tailed noises. In addition, without using the correct represen-

tation of bins, logarithmic binning cannot accurately estimate the

constant parameter of a power-law model.

2.1.2 Maximum Likelihood Estimation. The maximum likelihood

estimation (MLE) has been the most frequently reported method to

fit power-law distributions since the criticizers conducted inappro-

priate experiments to criticize LSE [6, 11, 12, 26, 38, 56]. MLEmainly

estimates the parameters that maximize the likelihood of the model

given the observed data [12, 38, 60]. The CSN2009 method [12]

seemed to become a “standard” for fitting power-law distributions.

Our analysis uncovers a fundamental flaw in CSN2009 [12]: it

tends to discard the majority of data (even though they are sampled

from a power-law model) and fit the long-tailed noises. Such flaw

invalidates the reliability of all the research based on CSN2009.

2.1.3 Cumulative Distribution Function. Some researchers estimate

parameters of power-law distributions by estimating their CDF

(Pcdf (x) =
∫ x
−∞

p(t)dt ) or rCDF (Prcdf (x) =
∫ ∞

x p(t)dt ) [6, 8, 12,
38, 42, 48]. Newman [38] advocates to use rCDF to plot power-law

distributions on doubly logarithmic system, and such rCDF plot

has become popular in visualizing power-law data.

Our experiments show that rCDF is a bad idea to plot power-law

data in practice, because it usually hides the true PDF of data.

2.2 Goodness-of-Fit Test
The KS test [50, 51] is widely used for power-law hypothesis test-

ing [3, 12, 26, 29, 37, 54]. The Chi-squared test [13, 40] is also used

for power-law hypothesis testing [6, 11]. Clauset et al. [12] pro-

pose to sample a large number of synthetic data from estimated

power-law model to calculate p-value for hypothesis test.
Our experiments show that the p-value of traditional KS test fails

to test power-law hypothesis in practice (see Section 3.3 and Ta-

ble 1), and that the hypothesis-testing method proposed by Clauset

et al. [12] fails to reject the hypothesis that the long-tailed noises fol-

low a power-law distribution (see Section 5, A.3, and Table 10). We

propose to set a KS statistic threshold derived from a large group of

samples drawn from the estimated power-law model to test power-

law hypothesis. Experiments on real-world data demonstrate that

our proposed method is effective in power-law hypothesis testing.
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3 METHODOLOGY
For a set of data points, if they follow a power-law distribution,

then they can be characterized by Eq. (1):

p(x) = K · x−α (1)

where α is the scaling exponent and K is the constant. Like many

other methods, we mainly discuss the situation where x ≥ 1, α > 1,

and K > 0. Mathematically, Eq. (1) possesses Property 1.

Property 1. Strictly decreasing property of function f (x) on do-
main D: ∀xi ,∀x j ∈ D, if xi < x j , then f (xi ) > f (x j ).

If a data point satisfies Property 2, then we say that the data

point possesses the strictly decreasing property.

Property 2. Strictly decreasing property of data point (xi , f (xi ))
in the set of data points {(x , f (x))} on domain D: ∀x ∈ D, if x < xi ,
then f (x) > f (xi ) and if xi < x , then f (xi ) > f (x).

3.1 Least-Squares Estimation with Average
Strategy for Power-Law Distributions

Eq. (1) is equivalent to Eq. (2):

s = α · t + c (2)

where s = − logp(x), t = logx , and c = − logK .
Given data points {(ti , si )}, 1 ≤ i ≤ N , that follow a line as Eq. (2),

using LSE to find the optimum value of α is to solve Eq. (3):

α̂ = arg min

α

N∑
i=1

(si − (α · ti + c))
2

(3)

Setting the gradient of the loss function to zero, we get α̂ by Eq. (4):

α̂ =

∑N
i=1

(ti − t̄)(si − s̄)∑N
i=1

(ti − t̄)2
(4)

where t̄ = 1

N
∑N
i=1

ti and s̄ =
1

N
∑N
i=1

si .
If the set of data points {(ti , si )}, 1 ≤ i ≤ N , can be perfectly fitted

by Eq. (2), then using any subset of two or more data points can

find the optimum α̂ , and all these optimum α̂ and their arithmetic

average are equal. Let α̂ j denote the optimum α̂ estimated by using

the first j data points, where 2 ≤ j ≤ N . Under perfect-fitting

condition, α̂2 = · · · = α̂N = α̂avд , where α̂avд is defined by Eq. (5):

α̂avд =
1

N − 1

N∑
j=2

α̂ j (5)

While there is rare perfect fitting in practice and inmost cases not

all the α̂ j are equal, using their arithmetic average can reduce the

impact of those data points deviated from the line. We use LSnorm
to denote the normal LSE defined by Eq. (4) while use LSavд to

denote the average-strategy LSE defined by Eq. (5). (While this

paper mainly discusses α > 1, LSnorm and LSavд apply to α > 0.)

3.2 Binning for Continuous Power-Law Data
For a continuous sample, if it perfectly follows a power-law distri-

bution, then it forms a perfect straight-line on doubly logarithmic

system. Figure 1 illustrates a power-law distribution spanned by

the bin from tbi to tbi+1
on doubly logarithmic system. The integral

of the line on the bin equals to the areas of the trapezoidABDC and

of the rectangle ABFE; namely AABDC = AABFE , where A indi-

cates the area. The pointG (tci , sci ) is the center of the line segment

CD where tci =
1

2
(tbi + tbi+1

) and sci = s(tci ) =
AABDC
|AB |

. Suppose

the marginal values of the bin on original coordinate system are

tbi

C

D

E
F

tbi+1

G

A B

Figure 1: Illustration of a continuous power-lawdistribution
spanned by the bin from tbi to tbi+1

on the doubly logarith-
mic system.G is the center of the line segmentCD. The areas
of the trapezoid ABDC and the rectangle ABFE are equal.

Table 1: Maximal Dn,n values and their p-values of the two-
sample KS test of ten groups of samples drawn from the
power-law model with α = 2.5, xmin = 1, and n = 10

4 and
n = 10

6. “Size” indicates the number of samples in the group.

Size Discrete Continuous

D
10

4,10
4 pvalue D

10
6,10

6 pvalue D
10

4,10
4 pvalue D

10
6,10

6 pvalue

100 0.0214 0.0205 0.0020 0.0332 0.0313 1.1e-4 0.0027 1.5e-3

200 0.0272 0.0012 0.0021 0.0227 0.0349 1.0e-5 0.0029 3.6e-4

300 0.0272 0.0012 0.0025 0.0032 0.0367 2.8e-6 0.0031 1.5e-4

400 0.0273 0.0012 0.0025 0.0032 0.0367 2.8e-6 0.0035 8.0e-6

500 0.0273 0.0012 0.0027 0.0015 0.0401 2.1e-6 0.0035 8.0e-6

xbi and xbi+1
, where tbi = logxbi and tbi+1

= logxbi+1
. Applying

tbi = logxbi and tbi+1
= logxbi+1

to tci we get Eq. (6).

tci =
1

2

(tbi + tbi+1
) = log (xbi · xbi+1

)
1

2 (6)

Its value on original coordinate system is given by Eq. (7).

xci = etci = (xbi · xbi+1
)

1

2 (7)

sci = s(tci ) and equals to the height of rectangle ABFE as given

by Eq. (8). Its value on original coordinate system is given by Eq. (9).

sci =
AABDC
|AB |

=

∫ tbi+1

tbi
s(t)dt

|tbi+1
− tbi |

= s(tci ) (8)

yci = e−sci = e−s(tci ) = p(xci ) (9)

Since AABDC = AABFE is always true, if the sample perfectly

follows a power-law distribution, then Eq. (6) and Eq. (8) as well

as Eq. (7) and Eq. (9) apply to arbitrary binning. The bin is repre-

sented by the point G (tci , sci ) on doubly logarithmic system and

the corresponding pointG ′ (xci ,yci ) on original coordinate system.

3.3 Power-Law Hypothesis Test
We use the Kolmogorov-Smirnov (KS) test [50, 51] to examine

whether to accept the hypothesis: the investigated data follow a

power-law distribution. The KS statistic (Dn ) is defined by Eq. (10):

Dn = sup

x
|Fn (x) − F (x)| (10)

where Fn (x) is the CDF of a sample or a set of data points, F (x) is
the CDF of the theoretic distribution, supx is the supremum of the

set of distances, and Dn ∈ [0, 1].

The two-sample KS statistic (Dn,m ) is defined by Eq. (11):

Dn,m = sup

x
|Fn (x) − Fm (x)| (11)

where Fn (x) and Fm (x) are the CDF of two samples.
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Table 2: Statistics of different sizes of discrete data that are sampled from a power-law model with α = 2.5 and xmin = 1. X
5th

indicates the fifth data point; Xf indicates the last data point that all the data points of {Xf } satisfy Property 2 while the next
data point does not satisfy Property 2; X1 indicates the first data point whose frequency is 1

n ; X̂
T
1
the estimated XT

1
using the

α̂
avд
f described in Section 4.2; andXmax indicates the last data point.Count(1) denotes the number of data points whose f (x) = 1

n
and Count(0) the number of x-values where f (x) = 0 for x ≤ Xmax . Rate(X ) denotes the total frequency of data points {X }. For
each sample size, statistical results are reported bymean ± standard deviation based on 500 samples.

Size X
5th Rate(X

5th ) Xf Rate(Xf ) X1 Rate(X1) X̂T
1

Xmax Count (1) Count (0)

10
3

5.0±0.0 0.9619±6.2e-3 5.5±1.3 0.9640±1.5e-2 11.7±2.7 0.9877±5.2e-3 14.2±1.1 145.48±338.8 8.3±2.6 124.3±338.4

10
4

5.0±0.0 0.9617±2.0e-3 9.1±1.8 0.9824±5.7e-3 24.2±3.6 0.9958±1.1e-3 35.5±1.2 749.6±1697.6 21.1±4.1 697.0±1697.5

10
5

5.0±0.0 0.9617±6.2e-4 15.2±2.7 0.9915±2.4e-3 54.6±6.3 0.9988±2.4e-4 88.9±1.3 3486.0±10643.0 53.0±6.2 3353.9±10643.0

10
6

5.0±0.0 0.9617±1.9e-4 24.6±3.8 0.9959±9.6e-4 125.3±12.7 0.9996±6.2e-5 223.3±1.3 14645.8±20550.6 133.2±10.3 14313.1±20549.5

10
7

5.0±0.0 0.9619±5.9e-5 38.4±5.3 0.9979±4.4e-4 292.1±25.6 0.9999±1.5e-5 561.0±1.4 73029.1±150829.3 334.1±15.8 72194.5±150828.9

10
8

5.0±0.0 0.9617±2.0e-5 61.7±7.7 0.9990±2.0e-4 691.9±49.8 0.99997±4.5e-6 1409.1±1.8 515207.4±3735626.3 840.6±24.8 513107.5±3735626.0

Table 3: Statistics of binned continuous data (width=1) that are sampled from a power-law model with α = 2.5 and xmin = 1

Size X
5th Rate(X

5th ) Xf Rate(Xf ) X1 Rate(X1) X̂T
1

Xmax Count (1) Count (0)

10
3

5.48±7.0e-4 0.9328±8.3e-3 6.5±1.5 0.9430±2.3e-2 14.8±2.9 0.9835±6.1e-3 18.6±1.4 84.4±57.5 10.1±3.0 57.6±56.3

10
4

5.48±6.4e-5 0.9320±2.5e-3 10.7±2.1 0.9716±8.7e-3 31.4±4.4 0.9943±1.4e-3 46.2±1.3 414.1±264.0 26.9±4.6 345.4±263.0

10
5

5.48±6.1e-6 0.9320±8.5e-4 17.2±3.0 0.9859±3.7e-3 69.5±7.8 0.9983±3.3e-4 115.9±1.5 2008.3±1762.5 69.0±7.9 1834.5±1761.1

10
6

5.48±6.6e-7 0.9320±2.5e-4 28.1±4.3 0.9932±1.6e-3 161.9±14.8 0.9995±7.2e-5 291.8±1.5 9194.7±8943.2 174.6±11.8 8756.2±8941.8

10
7

5.48±6.3e-8 0.9320±8.2e-5 44.7±5.8 0.9966±6.8e-4 377.2±30.5 0.9999±1.8e-5 734.0±1.9 41488.1±16322.9 440.3±18.4 40385.1±39880.8

10
8

5.48±6.1e-9 0.9320±2.6e-5 71.0±7.9 0.9983±3.0e-4 892.6±62.1 0.99996±5.1e-6 1846.3±2.6 187714.8±155880.0 1108.1±29.85 184941.6±155883.3

In Eq. (10), the null hypothesis (H0) is that the sample is drawn

from the theoretic distribution, while the alternative (H1) is that it

is not from the theoretic distribution. In Eq. (11), the null hypothesis

(H ′
0
) is that the two samples are drawn from the same distribution,

while the H ′
1
is that they are not from the same distribution.

We find the KS statistic useful but its derived p-value fails to
test power-law hypothesis in practice. Table 1 reports the maximal

two-sample KS statistics and their p-values of ten groups of samples

that are drawn from power-law models with α = 2.5, xmin = 1, and

n = 10
4
and n = 10

6
. All the p-values are less than 0.05, and they

reject the hypothesis H ′
0
. However, these samples are indeed drawn

from the same power-law model. Such contradiction indicates that

KS test’s p-value fails to examine power-law hypothesis. To resolve

the failure of KS test’s p-value, we set the maximal two-sample KS

statistic among a large group of samples that are drawn from a

power-law model with n as the threshold DT
n to determine whether

or not to accept the hypothesis. DT
n is defined by Eq. (12).

DT
n = max{D

i, j
n } (12)

where D
i, j
n is the KS statistic of the i-th and j-th samples.

We can get the true DT
n only when the group size approaches

infinity, which is impossible in practice. Empirically, we find to get

a reasonable DT
n when the group size reaches 300, given that the

calculation of DT
n for large samples is time-consuming.

In practice, we test power-law hypothesis by the following strat-

egy. Firstly, estimate a power-lawmodel from a dataset and calculate

Dn between the dataset and the estimated power-law model. Sec-

ondly, draw 300 samples from the estimated power-law model with

the same sample size as the dataset and calculate DT
n among the 300

samples. Finally, compare Dn and DT
n to examine the hypothesis

H0: if Dn ≤ DT
n , then accept H0; if D

T
n < Dn ≤ 2 × DT

n , then

moderately accept H0; and if 2 × DT
n < Dn , reject H0.

4 FITTING POWER-LAW DISTRIBUTIONS TO
DATA DRAWN FROM POWER-LAWMODEL

4.1 Sampling Data from Power-Law Models
and their Critical Statistics

Similar to those criticizers [6, 11, 12, 26, 38, 56], we sample data from

power-lawmodels with scaling exponentα = 2.5 andminimal value

xmin = 1, under both discrete and continuous types in different

sizes
1
: 10

3
, 10

4
, 10

5
, 10

6
, 10

7
, and 10

8
. Each continuous sample is

binned into a set of data points with width = 1 by the method

described in Section 3.2, so that these data points are comparable

to the ones of discrete samples. For each sample size, we draw 500

samples on which statistics and experimental results are based.

After continuous samples are binned, each sample is denoted by a

set of data points {(xi , f (xi ))} in ascending order by their x-values,
where f (xi ) is the frequency of xi in the sample.

For each set of data points, we set four critical data points whose

x-values are X
5th , Xf , X1, Xmax . For convenience, we use the four

critical x-values to represent their corresponding data points and

use them with curly brackets to represent the subset of data points

from the first data point to them; for example, {X
5th } represents

the set of the first five data points while {X1} represents the set

of data points from the first one to X1. The definitions of these

critical data points are as follows.X
5th indicates the fifth data point.

Xf indicates the last data point that all the data points of {Xf }

satisfy Property 2; while its very first subsequent data point does

not satisfy Property 2. X1 = min{xi | f (xi ) =
1

n } indicates the first

data point whose frequency is
1

n . Xmax = max{xi } indicates the
last data point. According to the definitions of Xf , X1, and Xmax ,

the relationship among them is Xf ≤ X1 ≤ Xmax .

1
We use the numpy.random.zipf function in the NumPy package to generate discrete samples and

use the randht module described in Clauset et al. [12] to generate continuous samples.
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Figure 2: LSE methods fit different sizes of discrete and binned (width=1) continuous data that are sampled from power-law
models with α = 2.5 and xmin = 1. LSall indicates applying LSnorm on all the data to estimate α . LSX 5th indicates applying LSavд
on {X

5th } to estimate α ; LSX f applying LSavд on {Xf }; and LSX 1 applying LSavд on {X1}. XT
1
= (K̂ ·n)

1

α̂ is the x-value of (XT
1
, 1

n ).

Suppose the sampling is perfect (which means the sampled data

perfectly follow a power-law distribution and possess Property 1),

the frequency of the lowest-frequency data point is
1

n and let this

data point be (XT
1
, 1

n ), then solving p(XT
1
) = K · 1

n , we get X
T
1
=

(K · n)
1

α . That means XT
1

∝ n
1

α , and when n → ∞, XT
1

→ ∞. If

the sampling is perfect, then Xf = X1 = XT
1
= Xmax according to

their definitions. For a finite-size sample, however, the sampling is

not perfect in reality and these critical values are not equal. We will

see that their empirical relationship is Xf < X1 < XT
1
≪ Xmax .

Table 2 and 3 summarize the statistics of these sampled discrete

and continuous data. Based on these critical data points we re-

port some critical statistics about the data: Rate(X
5th ), Rate(Xf ),

Rate(X1),Count(1), andCount(0). Rate(X ) =
∑
xi ≤X f (xi ) denotes

the total frequency of {X }. Count(1) =
∑
xi ≤Xmax I(f (xi ) =

1

n )

denotes the number of
1

n -frequency data points, where I(·) is the
indicator function. Count(0) =

∑
xi ≤Xmax I(f (xi ) = 0) denotes the

number of 0-frequency data points within Xmax . X̂
T
1
is the esti-

mated XT
1
using α̂

avд
f as described in Section 4.2. Figure 2 plots

example discrete and binned continuous samples (indicated by

“Data” and in the blue font) on doubly logarithmic system.

Table 2 and 3 show that whatever the sample size is, X
5th and

Rate(X
5th ) of both discrete and continuous data are almost invari-

ant:Rate(X
5th ) is around 96.17% for discrete data and around 93.20%

for continuous data. The high Rate(X
5th ) indicates that the first

five data points contain most of the data. When the magnitude of

the sample size increases, Xf , X1, and Xmax increase dramatically.

Rate(Xf ) and Rate(X1) are even higher than Rate(X
5th ); they in-

crease steadily from 94.30%∼96.40% and 98.35%∼98.77% at n = 10
3

to 99.83%∼99.90% and 99.996%∼99.997% at n = 10
8
. This indicates

that {X1} contains almost all the data of a sample.

At each sample size, Xmax is significantly greater than X1. How-

ever, the data points from X1 to Xmax contain less than 1.65% of

data. It should be noted that (almost) all the data points counted

in Count(1) and Count(0) appear between X1 and Xmax . Count(1)
indicates that the less than 1.65% of data are mainly composed

of
1

n -frequency data points. Count(0) is significantly larger than

Count(1) and it is comparable with |Xmax − X1 |. This means, for
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Table 4: Estimated α of fitting different sizes of discrete data that are sampled from a power-law model with α = 2.5 and
xmin = 1. For each size, experimental results are reported bymean ± standard deviation based on 500 samples.

Size α̂
5th α̂avд

5th α̂f α̂avдf α̂X1
α̂avдX1

α̂all

10
3

2.5185±0.1321 2.5100±0.0855 2.4923±0.1140 2.4972±0.0820 2.5428±0.1809 2.5102±0.0750 1.5896±0.2868

10
4

2.5013±0.0426 2.5008±0.0263 2.4962±0.0445 2.4990±0.0244 2.5560±0.0800 2.5120±0.0288 1.5953±0.1855

10
5

2.4993±0.0126 2.4996±0.0078 2.5005±0.0184 2.5001±0.0079 2.5393±0.0392 2.5096±0.0133 1.6510±0.1183

10
6

2.4999±0.0043 2.5000±0.0026 2.5003±0.0072 2.5002±0.0027 2.5319±0.0210 2.5081±0.0072 1.6609±0.0732

10
7

2.5001±0.0012 2.5000±0.0007 2.5000±0.0029 2.5000±0.0010 2.5240±0.0115 2.5065±0.0040 1.6765±0.0472

10
8

2.5000±0.0005 2.5000±0.0003 2.5001±0.0013 2.5000±0.0004 2.5200±0.0070 2.5052±0.0023 1.6795±0.0290

Table 5: Estimated α of fitting binned continuous data (width=1) that are sampled from a power-law model with α = 2.5

Size α̂
5th α̂avд

5th α̂f α̂avдf α̂X1
α̂avдX1

α̂all

10
3

2.5258±0.1282 2.5315±0.0886 2.5034±0.1114 2.5189±0.0839 2.5573±0.1735 2.5261±0.0749 1.5151±0.2734

10
4

2.5199±0.0404 2.5225±0.0285 2.5117±0.0402 2.5173±0.0226 2.5524±0.0743 2.5233±0.0271 1.5559±0.1588

10
5

2.5165±0.0128 2.5225±0.0088 2.5084±0.0160 2.5141±0.0079 2.5428±0.0351 2.5164±0.0120 1.6172±0.1083

10
6

2.5170±0.0038 2.5224±0.0027 2.5049±0.0062 2.5101±0.0026 2.5303±0.0182 2.5108±0.0064 1.6511±0.0679

10
7

2.5168±0.0012 2.5222±0.0008 2.5033±0.0025 2.5076±0.0012 2.5242±0.0101 2.5081±0.0033 1.6698±0.0394

10
8

2.5168±0.0004 2.5223±0.0003 2.5023±0.0011 2.5058±0.0006 2.5195±0.0063 2.5062±0.0020 1.6798±0.0259

Table 6: Fitting results of CSN2009 on data sampled from power-lawmodels with α = 2.5 and xmin = 1. The “Discrete (x̂min ≥ 2)”
indicates that results are based on discrete samples in which CSN2009 gets x̂min ≥ 2 and “Cnt” indicates the count of such
x̂min ≥ 2 samples. “Continuous (Cover < 50%)” indicates that results are based on continuous samples in which CSN2009
covers less than 50% of data and “Cnt” indicates the count of such Cover < 50% samples. “Discrete” and “Continuous” indicate
the results are based on the whole 500 samples. “Cover” denotes the percentage of data covered by CSN2009.

Size Discrete Discrete (x̂min ≥ 2) Continuous Continuous (Cover < 50%)

α̂ x̂min Cover α̂ x̂min Cover Cnt α̂ x̂min Cover α̂ x̂min Cover Cnt

10
3

2.5085±0.0645 1.0340 97.65% 2.6325±0.1505 2.0625 26.48% 16 2.5082±0.0656 1.1784 84.56% 2.5436±0.1155 2.0258 37.62% 40

10
4

2.5003±0.0195 1.0180 98.66% 2.5200±0.0686 2.0000 25.54% 9 2.5006±0.0204 1.1652 85.85% 2.5069±0.0423 1.9708 37.93% 47

10
5

2.4998±0.0062 1.0180 98.66% 2.5033±0.0141 2.0000 25.45% 9 2.5007±0.0062 1.1474 86.37% 2.5024±0.0097 1.8986 39.87% 32

x ∈ [X1,Xmax ], most f (x) = 0, some f (x) = 1

n , and few f (x) > 1

n .

Figure 2 visualizes the distributions of data points between X1 and

Xmax . They absolutely do not satisfy Property 1 nor Property 2.

They are sampling noises and cannot be treated as power-law data.

We call these data between X1 and Xmax as long-tailed noises.
When the magnitude of the sample size increases, all the Xf ,

X1, X̂
T
1
, and Xmax increase (see Table 2 and 3). When n → ∞, the

sample on doubly logarithmic system forms a perfect straight-line,

where all the data points satisfy Property 2 and Xf = X1 = XT
1
=

Xmax = ∞ and the long-tailed noises disappear.

4.2 Results of Least-Squares Estimation Fitting
Data Sampled from Power-Law Models

Table 4 and 5 reports the α̂ of using LSE to fit the sampled discrete

and binned continuous data. α̂
5th , α̂f , α̂1, and α̂all indicate the α̂

by LSnorm on {X
5th }, {Xf }, {X1}, and {Xmax }, respectively. α̂

avд
5th ,

α̂
avд
f , and α̂

avд
X1

indicates the α̂ by LSavд on corresponding data

points. Figure 2 plots example fitting results of α̂
avд
f (indicated by

“LSX f ”), α̂
avд
X1

(“LSX 1”), and α̂all (“LSall ”) on the sampled data.

Table 4 and 5 show that α̂all on both discrete and continuous

data ranges from 1.5896 to 1.7312, which is significantly biased

from the true value of 2.5. Such biased estimation is consistent with

the one reported by those criticizers [6, 12, 26, 38, 56]. The fitting

result of LSall in Figure 2(b) is consistent with the one reported

by Bauke [6] (see its Fig. 1(a)), where both settings are the same:

discrete samples, α = 2.5, xmin = 1, and n = 10
4
. As we analyze in

Section 4.1 and show in the supplementary Section A.3, however,

the long-tailed noises cannot be treated as power-law data.

Look at α̂
5th , α̂

avд
5th , α̂f , α̂

avд
f , α̂1, and α̂

avд
X1

that are estimated

without long-tailed noises. All of them range around the true value

at different sizes. Specifically, α̂
5th , α̂f , and α̂1 range from 2.4923 to

2.5573, while α̂
avд
5th , α̂

avд
f , and α̂

avд
X1

from 2.4972 to 2.5315. The α̂
5th

at n = 10
4
in Table 4 is consistent with the one reported in Gold-

stein et al. [26] (see the “Linear 5-points” item in its Table 1). That

means, when excluding long-tailed noises, α̂ changes from signifi-

cantly biased to almost unbiased. It is the long-tailed noises causing

significant bias in LSE. Except α̂
5th and α̂

avд
5th on continuous data,

when the magnitude of sample size increases, all the six α̂ approach

much closer to the true value. α̂
5th and α̂

avд
5th on continuous data

slightly deviate from the true value, because the method used for

continuous data generation tends to generate more data in small

x-values. When the magnitude of sample size increases, all the stan-

dard deviations of α̂ decrease. When the sample size is large enough,

some α̂ are unbiased in discrete data, such as α̂
avд
5th at n = 10

6
and

α̂
avд
f at n = 10

7
. We can expect that when n → ∞, an individual

sample forms a perfect straight-line on doubly logarithmic system,

and according to the Gauss-Markov theorem [14, 30, 44], all the

α̂
5th , α̂

avд
5th , α̂f , α̂

avд
f , α̂1, and α̂

avд
X1

achieve unbiased estimation.
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Table 7: Statistics of real-world datasets and fitting results of LSavд and CSN2009 on these datasets. “nan” indicates that LSavд
rejects H0 early for the dataset. “Coverage” indicates the percentage of data that are covered by the method.

Dataset Size xmin Type LSavд CSN2009

α̂ Coverage Dn DT
n Decision α̂ x̂min Coverage p-value

Words 18,855 1 discrete 1.6616 98.48% 0.0248 0.0202 moderate 1.95 7 15.69% 0.49
Metabolic 1,641 1 discrete nan nan nan nan reject 2.8 4 45.58% 0.00

Terrorism 9,101 1 discrete 1.6607 98.60% 0.0460 0.0343 moderate 2.4 12 6.01% 0.68
Species 509 1 discrete 1.2422 97.60% 0.0807 0.1041 accept 2.4 4 29.42% 0.10
Blackouts 211 1,000 discrete nan nan nan nan reject 2.3 230,000 27.96% 0.62
Cities 19,447 1 discrete nan nan nan nan reject 2.37 52,457 2.98% 0.76
Fires 203,785 1 continuous 2.7496 89.15% 0.3070 0.0045 reject 2.2 63,240 0.26% 0.05

Flares 12,773 20 discrete nan nan nan nan reject 1.79 323 12.40% 1.00
Quakes 19,302 0.1 continuous nan nan nan nan reject 7.57 3.3 34.49% 0.00

Surnames 2,753 12,436 continuous 1.9868 94.48% 0.0385 0.0509 accept 2.5 111,920 8.68% 0.20
Citations 415,229 1 discrete 0.9156 99.79% 0.3442 0.0057 reject 3.16 160 0.83% 0.20
Weblinks 241,428, 853 1 discrete 1.4964 99.99% 0.1119 0.00018 reject 2.336 3,684 0.01% 0.00

Comparing α̂
avд
5th vs. α̂

5th , α̂
avд
f vs. α̂f , and α̂

avд
X1

vs. α̂1, we

can see that LSavд performs much better than LSnorm . Moreover,

LSavд achieves lower standard deviation than LSnorm . The reason

is that the average strategy used in LSavд reduces the impact of

those data points deviated from the regression line. Example plots

of α̂
avд
5th (indicated by LS

5th ), α̂
avд
f (by LSX f ), and α̂

avд
X1

(by LSX 1)

in Figure 2 demonstrate that LSavд fits power-law data perfectly.

4.3 LSavд vs. CSN2009
We compare LSavд with CSN2009 [12]. Table 6 reports the fitting re-

sults of CSN2009 on 10
3
, 10

4
, and 10

5
of the same sampled data used

for LSavд . (Only these results of CSN2009 are available because

running CSN2009 on large samples is extremely time-consuming.)

When consider all the 500 samples, LSavд achieves similar α̂ on

discrete data and slightly deviated α̂ on continuous data in compar-

ison with CSN2009, because the method used for continuous data

generation is not perfect. However, CSN2009 gets x̂min ≥ 2 in some

discrete samples and less than 50% coverage in some continuous

samples. The reason is that CSN2009 adopts a minimum-KS-statistic

strategy to choose large lower bound (i.e. x̂min ) and discards those

x < x̂min data although they contain the majority of data [12]. This

leads CSN2009 to suffer from the problem of low coverage and indi-

cates a fundamental flaw in CSN2009: it treats the majority of data

that are sampled from a power-law model as being not well-fitted

by a power-law distribution and discards them. Such flaw becomes

extremely severe when fitting power-law distributions to empirical

data (see Section 5). By contrast, LSavд discards long-tailed noises

and fits the majority of data. The supplementary Figure 4(a) shows

an example plot of such flaw in CSN2009 in comparison with LSavд .

5 FITTING POWER-LAW DISTRIBUTIONS TO
REAL-WORLD DATA

We apply LSavд to fit power-law distributions to twelve real-world

datasets that are used in Clauset et al. [12] and compare the fitting

results with the ones of CSN2009 [12]. The statistics of the twelve

datasets are summarized in the first four columns of Table 7. (For

details of these datasets, please refer to the Section 6, Table 3, Figure

8 and 9 in Clauset et al. [12].) The setup of applying LSavд to real-

world data is detailed in the supplementary Section B.

5.1 Experimental Results
The last nine columns of Table 7 report the experimental results of

LSavд and CSN2009 in fitting these real-world datasets. For LSavд ,
the coverage is calculated by the total frequency of {X1} if the

hypothesis is not rejected early; “nan” indicates that LSavд rejects

H0 early for the dataset and only the decision of rejection is reported

in the table. For CSN2009, the results are mainly from Clauset et al.

[12] and the coverage is calculated based on the x̂min .

Figure 3 plots the results of LSavд and CSN2009 fitting these

real-world datasets on doubly logarithmic system. LSavд displays

only the PDF plot while CSN2009 displays both PDF and rCDF

plots; CSN2009’s rCDF plot corresponds to the “complementary

cumulative distribution function (CDF)” in Clauset et al. [12].

5.2 LSavд PDF vs. CSN2009 PDF
Compare LSavд and CSN2009 by looking at Table 7 and PDF plots

in Figure 3. Generally, LSavд mainly fits the first several data points

that contain the majority of data; for example, in the seven datasets

that LSavд does not reject H0 early (i.e., Words, Terrorism, Species,

Fires, Surnames, Citations, Weblinks), LSavд covers 89.15%∼99.99%

of data. By contrast, CSN2009 mainly fits the last many data points

that contain only a few data; it covers only 0.01%∼45.58% of data.

For the four datasets that LSavд accepts or moderately accepts H0,

CSN2009 also accepts H0 with p-values from 0.10 to 0.68. However,

CSN2009 covers only 6.01%∼27.96% of these data, in comparison

with the coverage of 94.48%∼98.60% by LSavд . Figure 3(a), 3(c), 3(d),
and 3(j) intuitively visualize such difference. For some datasets that

LSavд rejects H0 early, such as Blackouts, Cites, Flares, CSN2009

treats their long tails as being following power-law distributions

with high p-values from 0.62 to 1.0. Figure 3(e), 3(f), and 3(h) vi-

sualize such ridiculous fittings by CSN2009. As we demonstrate

in Section 4.1, the long-tailed noises of finite-size samples cannot

be treated as power-law data. CSN2009 tends to discard the ma-

jority of data and fit the long-tailed noises and therefore produces

substantially wrong fittings. The reason is as illustrated in Sec-

tion 4.3 and the supplementary Section A.3 that CSN2009 adopts a

minimum-KS-statistic strategy to choose the large lower bound as

the beginning of power-law distributions and mistakenly teats the

long-tailed noises as being following power-law distributions.

2754



WWW’22, April 25–29, 2022, Virtual Event, Lyon, France Zhong, Wang, & Zhang

100 101 102 103 104

10 7

10 5

10 3

10 1

Words (n=18855)
rCDF
OUR ( = 1.6616, moderate)
CSNpdf ( = 1.95, p-value = 0.49)
CSNrcdf

(a) Words

100 101 102

10 6

10 5

10 4

10 3

10 2

10 1

100

Metabolic (n=1641)
rCDF
CSNpdf ( = 2.8, p-value = 0.0)
CSNrcdf

(b) Metabolic

100 101 102 103

10 7

10 5

10 3

10 1

Terrorism (n=9101)
rCDF
OUR ( = 1.6607, moderate)
CSNpdf ( = 2.4, p-value = 0.68)
CSNrcdf

(c) Terrorism

100 101 102

10 5

10 4

10 3

10 2

10 1

100

Species (n=1251)
rCDF
OUR ( = 1.2422, accept)
CSNpdf ( = 2.4, p-value = 0.1)
CSNrcdf

(d) Species

(e) Blackouts (f) Cites (g) Fires (h) Flares

100
10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Quakes (n=19302)
rCDF
CSNpdf ( = 7.57, p-value = 0.0)
CSNrcdf

(i) Quakes (j) Surnames

100 101 102 103 104

10 8

10 6

10 4

10 2

100

Citations (n=415229)
rCDF
OUR ( = 0.9156, reject)
CSNpdf ( = 3.16, p-value = 0.2)
CSNrcdf

(k) Citations (l) Weblinks

Figure 3: Fitting and hypothesis testing results of LSavд (denoted by “OUR”) and CSN2009 (by “CSN”) on real-world datasets
on doubly logarithmic system. OUR displays only PDF plot. CSNpdf indicates CSN2009’s PDF plot while CSNrcdf indicates
CSN2009’s rCDF plot. A figure without OUR plot indicates “reject,” meaning that LSavд rejects the hypothesis H0 very early.

5.3 CSN2009 PDF vs. CSN2009 rCDF
Figure 3 shows that the rCDF of these data especially their long tails

might seem to be fitted by CSN2009 with high p-values, however,
their PDF actually do not follow power-law distributions. Such PDF

vs. rCDF plots of CSN2009 are consistent with the plots of CSN2009

fitting long-tailed noises as shown in Figure 4. This indicates that

using rCDF plot may hide the true probability distribution of data

and lead to wrong fittings. The reason may be that only when the

PDF of data follows a power-law distribution, we can use the rCDF

to derive the PDF by the power-law function. We should be careful

when trying to use rCDF for power-law fitting or plot.

6 CONCLUSION
In this paper, we propose an average strategy for least-squares esti-

mation (LSE) to fit power-law distributions, define the correct way

to bin continuous power-law data into data points, and propose to

use the maximal statistic of the two-sample Kolmogorov-Smirnov

(KS) test among a large group of power-law samples as the thresh-

old to examine power-law hypothesis. By using these proposed

methods, we conduct extensive experiments, demonstrating that

the criticism about the inaccuracy of LSE in fitting power-law dis-

tributions is complete nonsense. Our experiments show that LSE

fits power-law data perfectly and that it is the long-tailed noises of

finite-size samples causing the inaccuracy when LSE fitting power-

law distributions and such long-tailed noises cannot be treated as

power-law data even though they are sampled from power-law

models. Those criticizers [6, 11, 12, 26, 38, 56] mistakenly treats the

data problem as the model problem. Our experiments uncover a

fundamental flaw in the widely known CSN2009 method proposed

by Clauset et al. [12]: it tends to discard the majority of power-law

data and fit the long-tailed noises. Such flaw invalidates the reliabil-

ity of all the research based on CSN2009 and all those works (e.g.,

[10, 21, 39, 52, 54]) need to be re-investigated. Our experiments

also show that the popular reserve cumulative distribution function

(rCDF) is a bad idea to plot power-law data in practice because it

usually hides the true probability distribution of data. We hope that

our research can clean up the bias that has been caused by those

misleading research in research community about LSE in fitting

power-law distributions, and that researchers should be careful not

to mistakenly treat a data problem as a model problem.
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Table 8: Estimated α of fitting different sizes of continuous data (with varied-width binning and logarithmic binning) sampled
from a power-law model with α = 2.5 and xmin = 1. Experimental results are based on 500 samples for each size.

Size Varied-width Binning Logarithmic Binning

α̂
5th α̂avд

5th α̂f α̂avдf α̂X1
α̂avдX1

α̂loд α̂avдloд

10
3

2.5435±0.1447 2.5240±0.0794 2.4968±0.0988 2.5099±0.0725 2.5559±0.1702 2.5234±0.0762 2.3920±0.1653 2.4901±0.0590

10
4

2.5161±0.0425 2.5121±0.0257 2.5121±0.0422 2.5131±0.0224 2.5517±0.0758 2.5213±0.0283 2.4252±0.1063 2.4940±0.0257

10
5

2.5171±0.0140 2.5130±0.0079 2.5009±0.0171 2.5127±0.0080 2.5398±0.0353 2.5163±0.0125 2.4444±0.0830 2.4966±0.0139

10
6

2.5160±0.0043 2.5125±0.0025 2.5068±0.0068 2.5100±0.0027 2.5280±0.0194 2.5107±0.0068 2.4613±0.0611 2.4976±0.0083

10
7

2.5159±0.0013 2.5124±0.0007 2.5049±0.0029 2.5083±0.0012 2.5217±0.0110 2.5082±0.0037 2.4708±0.0434 2.4986±0.0049

10
8

2.5161±0.0004 2.5125±0.0003 2.5033±0.0013 2.5067±0.0006 2.5172±0.0067 2.5060±0.0021 2.4786±0.0364 2.4991±0.0036

Table 9: Estimated α of fitting different sizes of sampled continuous data with using bin center representation for fixed-width,
varied-width, and logarithmic binning. Experimental results are based on 500 samples for each size.

Size Fixed-width Binning Varied-width Binning Logarithmic Binning

α̂
5th α̂avд

5th α̂f α̂avдf α̂X1
α̂avдX1

α̂
5th α̂avд

5th α̂f α̂avдf α̂X1
α̂avдX1

α̂loд α̂avдloд

10
3

2.6306 2.6733 2.5981 2.6522 2.6084 2.6170 2.6439 2.6011 2.5894 2.5852 2.6275 2.6017 2.3920 2.4901

10
4

2.6246 2.6639 2.5751 2.6225 2.5795 2.5821 2.6150 2.5883 2.5870 2.5916 2.5952 2.5852 2.4252 2.4940

10
5

2.6209 2.6639 2.5512 2.5959 2.5569 2.5522 2.6160 2.5892 2.5649 2.5843 2.5638 2.5611 2.4444 2.4966

10
6

2.6215 2.6638 2.5335 2.5723 2.5373 2.5313 2.6149 2.5886 2.5464 2.5712 2.5406 2.5393 2.4613 2.4976

10
7

2.6213 2.6636 2.5229 2.5546 2.5277 2.5196 2.6148 2.5885 2.5337 2.5591 2.5282 2.5254 2.4708 2.4986

10
8

2.6213 2.6637 2.5157 2.5410 2.5213 2.5124 2.6150 2.5886 2.5234 2.5470 2.5204 2.5158 2.4786 2.4991

A FITTING POWER-LAWDISTRIBUTIONS TO
DATA DRAWN FROM POWER-LAWMODEL

A.1 Our Bin Representation Applies to any
Kinds of Binning Methods

In Table 3 we report the fitting results of LSnorm and LSavд on the

sampled continuous data that are binned by our binning method

with fixedwidth=1. In Table 8 we report the fitting results of LSnorm
and LSavд on the sampled continuous data that are binned by our

binning method with varied widths and logarithmic widths. In

varied-width binning, the bins in odd numbers are set by width=1

while the bins in even numbers by width=2. In logarithmic binning,

the base of logarithm for bins is set by 2. Comparing Table 8 with

Table 3, we can see that LSnorm achieves similar α̂
5th , α̂f , and α̂1

in both fixed-width binning and varied-width binning, and LSavд
achieves similar α̂

avд
5th , α̂

avд
f , and α̂

avд
1

in both kinds of binning.

LSnorm with logarithmic binning achieves underestimated α̂loд
mainly because the sampling is not perfect; the α̂loд = 2.4252 on

10
4
is consistent to the one in Bauke [6] (i.e., 2.43; see its Fig. 1(c)).

However, when the magnitude of sample size increases, the α̂loд
is steadily closer to the true value of 2.5. LSavд achieves much

better estimation mainly because the average strategy reduces the

impact of deviated data points. When the magnitude of sample

size increases, the standard deviations of both LSnorm and LSavд
decrease in all the fixed-width, varied-width, and logarithmic bin-

ning. This experimentally verifies that our bin representation for

continuous data applies to any kinds of binning methods.

A.2 Our Bin Representation is Better than the
Bin Center Representation

As shown in Figure 1, only the area of the rectangleABFE equals to

the one of the trapezoid ABDC (i.e., AABFE = AABDC ). The area

of any other rectangles with AB being the width does not equal

to AABDC . Therefore, using any other points to represent the bin

is incorrect and will result in biased estimated model, either the

exponent or in the constant or in both.

Table 9 reports the fitting results of applying LSnorm and LSavд
on the sampled continuous data that are binned by a way in which

other settings are the same as our binning method except xci is

set by the center of the bin (i.e., xci =
1

2
(xbi + xbi+1

)) instead of

Eq. (7). Such bin center representation (i.e., represent the bin by its

center) is used by most previous research [23, 24, 32, 36, 42] and

some criticizers who conduct inappropriate experiments to criticize

LSE in fitting power-law distributions [56].

Table 9 shows that when using bin center representation, both

LSnorm and LSavд achieve biased estimation on the exponent α in

both fixed-width and varied-fixed binning. For logarithmic binning,

it is expected that the bin center representation achieves the same α̂
as our bin representation because the bin center presentations and

our bin representations form parallel lines with the same slope on

doubly logarithmic system. We should note that while the parallel

lines have the same slope, their intercepts are different, and thus

the estimated constants of power-law models are different.

A.3 Not All the Data Drawn from a Power-Law
Model Follow a Power-Law Distribution

In Section 4.1, statistics of the sampled data indicates that the long-

tailed noises cannot be treated as power-law data. In this supple-

mentary section, we use power-law models to fit these long-tailed

noises and plot the fitting results on doubly logarithmic system.

Table 10 reports the α̂ of using LSnorm , LSavд , and CSN2009 [12]

to fit these long-tailed noises of sampled discrete and continuous

data. Figure 4(b) plots example results of using LSnorm , LSavд , and
CSN2009 to fit the long-tailed noises of discrete data that are drawn

from a power-law model with α = 2.5, xmin = 1, and n = 10
6
.
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(b) LSnorm vs. LSavд vs. CSN2009 on

long-tailed noises of a power-law sample

Figure 4: (a) LSavд andCSN2009 on a discrete power-law sam-
ple. (b) LSnorm , LSavд , and CSN2009 on long-tailed noises.
The discrete sample and long-tailed noises are drawn from
a power-law model with α = 2.5, xmin = 1, and n = 10

6.

Table 10: Estimated α of LSnorm , LSavд , and CSN2009 fitting
long-tailed noises of discrete and continuous data.

Size
Discrete Continuous

α̂er r α̂avдer r α̂csn /p-value α̂er r α̂avдer r α̂csn /p-value

10
3

0.1543 0.1518 3.0780/0.5472 0.2369 0.2134 2.7486/0.5974

10
4

0.2583 0.1171 2.5619/0.5633 0.3341 0.1453 2.6062/0.5530

10
5

0.3273 0.1137 2.5456/0.5569 0.3856 0.1358 2.5331/0.5467

10
6

0.3745 0.1177 - 0.4171 0.1317 -

10
7

0.4221 0.1253 - 0.4525 0.1352 -

10
8

0.4564 0.1321 - 0.4840 0.1405 -

As Table 10 shows
2
, the long-tailed noises of both discrete and

continuous data are fitted by LSnorm with α̂err ranging from 0.1543

to 0.4840 and by LSavд with α̂
avд
err from 0.1137 to 0.2134. Especially,

when the sample size reaches 10
4
, α

avд
err ranges from 0.1137 to

0.1453. All the α̂err and α̂
avд
err are close to zero and far less than

the true value of power-law models. It is reasonable because the

long-tailed noises are mainly composed of
1

n -frequency data points

where the slope should be close to zero. In comparison, CSN2009

fits the long-tailed noises with α̂csn from 2.5468 to 3.0780. What

is worse is that CSN2009 achieves relatively high p-values around
0.55 for its fittings; this means that CSN2009 mistakenly accepts the

hypothesis with high confidence that such long-tailed noises follow

a power-law distribution. The worst thing is that CSN2009 uses

rCDF to plot the data.
3
Figure 4(b) shows that even though the long-

tailed noises do not follow a power-law distribution (as displayed

by their PDF and the statistics reported in Table 2 and 3), their rCDF

seems to be fitted by a power-law distribution. This indicates that

such rCDF plot hides the true PDF of data, and may hide the truth

that the data points do not follow a power-law distribution.

After illustrating that not all the data that are sampled from

a power-law model follow a power-law distribution, we explain

why this happens. The reason is that the power-law distribution

2
Only the results of CSN2009 on the long-tailed noises of these 10

3
, 10

4
, and 10

5
samples are

available because CSN2009 is extremely time-consuming on large sizes of samples.

3
According to its definition (Prcdf (x ) =

∫ ∞

x p(t )dt , where 0 ≤ p(x ) ≤ 1), the rCDF is

a monotonically non-increasing function on its domain D: ∀xi , ∀xj ∈ D, if xi < xj , then
Prcdf (xi ) ≥ Prcdf (xj ). The rCDF plots reported in Newman [38] and Clauset et al. [12] are

incorrect because they exclude those x -values whose frequencies are 0, even though Newman [38]

advocates to use rCDF to plot power-law data. The rCDF plots reported in Bauke [6] are correct.

defined by Eq. (1) is not uniform but strongly skewed in favour of

those small x-values and a finite-size sample cannot cover all the

possible x-values. Looking at the item where n = 10
4
in Table 2,

for example, {X1} includes 24.2 possible x-values and contains

99.58% of data, namely, 9958 observations; while the long-tailed

noises include 725.4 possible x-values but contain only 0.42% of

data, namely, 42 observations. That means, for the long-tailed noises

(i.e., data between X1 and Xmax ), the number of observations (i.e.,

42) is far less than the number of possible x-values (i.e., 725.4).
This is the reason why there are a large number of 0-frequency

and
1

n -frequency data points between X1 and Xmax . Using these

0-frequency and
1

n -frequency data points to estimate parameters

of power-law distributions will result in inaccurate estimation.

We use an analogy to explain why we cannot use the long-tailed

noises to estimate parameters of power-law models. Suppose the

occurrence probabilities of the six sides of a dice are not the uniform

1

6
but

32

63
,

16

63
,

8

63
,

4

63
,

2

63
, and

1

63
, we can expect that when drawing

infinite observations from the dice, we will obtain unbiased estima-

tion for the occurrence probabilities of the dice. But if we draw only

three observations, it is possible that the three observations contain

one
32

63
-side, one

8

63
-side, and one

1

63
-side (or other distributions).

Using the three observations to estimate the occurrence probabili-

ties of the dice will result in substantial bias. Similarly, using the

long-tailed noises of finite-size samples to estimate parameters of

power-law models will result in substantial bias.

B FITTING POWER-LAW DISTRIBUTIONS TO
REAL-WORLD DATA

Applying LSavд to real-world data mainly contains two stages:

fitting real-world data and testing power-law hypothesis.

B.1 Fitting Real-World Data
For each set of real-world data points, we apply LSavд on {X

5th },

{Xf }, and {X1}, and denote the α̂ by α̂
avд
5th , α̂

avд
Xf

, and α̂
avд
X1

. After

getting the estimated power-law models, we calculate their corre-

sponding KS statistics on {X1}, denoted by D5th
n , D

Xf
n , and DX1

n ,

and choose the minimal one and its corresponding model as the

final results of our method. Note that when estimating the power-

law model, we use {X
5th }, {Xf }, and {X1}, but when calculating

KS statistic, we apply the estimated power-law model on {X1}.

B.2 Testing Power-Law Hypothesis
If any of α̂

avд
5th , α̂

avд
Xf

, and α̂
avд
X1

does not exist, we reject H0 (i.e.,

early rejection). (If any of {X
5th }, {Xf }, and {X1} contains less

than two data points, the corresponding α̂ does not exist.) From the

estimated power-law model we draw 300 samples, then calculate

DT
n by Eq. (12) and use the strategy described in Section 3.3 to

decide whether to accept, moderately accept, or reject H0.

B.3 Real-World Datasets
We tried to collect other twelve datasets by the given links and con-

tacting the authors of those datasets according to Aaron Clauset’s

instruction at https://aaronclauset.github.io/powerlaws/data.htm,

but unfortunately, those authors either did not reply us or could

not provide us those datasets. Clauset et al. [12] said they have no

permission to make those datasets publicly available.
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