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a b s t r a c t

Entities involve important concepts with concrete meanings and play important roles in numerous
linguistic tasks. Entities have different forms in different linguistic tasks and researchers treat those
different forms as different concepts. In this paper, we are curious to know whether there are some
common characteristics that connect those different forms of entities. Specifically, we investigate the
underlying distributions of entities from different types and different languages, trying to figure out
some common characteristics behind those diverse entities. After analyzing twelve datasets about
different types of entities and eighteen datasets about entities in different languages, we find that
while these entities are dramatically diverse from each other in many aspects, their length-frequencies
can be well characterized by a family of Marshall–Olkin power-law (MOPL) distributions. We conduct
experiments on those thirty datasets about entities in different types and different languages, and
experimental results demonstrate that MOPL models characterize the length-frequencies of entities
much better than two state-of-the-art power-law models and an alternative log-normal model.
Experimental results also demonstrate that MOPL models are scalable to the length-frequency of
entities in large-scale real-world datasets.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Estoup [1] and Zipf [2,3] found a very long time ago that the
ank-frequency of words in natural languages follows a family of
ower-law distributions. During his exploration, Zipf also found
hat the meaning-frequency of words follows power-law distri-
utions as well. The rank-frequency distribution of words is later
redited as Zipf’s law and provides a direction to understand
he use of languages in our communicative system. Zipf’s law
as been observed in many languages [3,4] and has attracted
remendous attention of researchers from diverse areas for more
han eighty years [5].

The Zipf distribution has a linear behavior in the log–log
cale and is widely used to model phenomena such as word
requencies, city sizes, income distribution, and network struc-
ures. However, the Zipf distribution may not fit well the prob-
bilities of the first positive integer numbers, which are often
bserved to be higher or lower than expected by the linear model.
esides the rank-frequency and meaning-frequency of words,
ipf also analyzed word length, sentence length, and phonemes
3].
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Although Zipf explained the use of these three language units
under the same principle of least effort as he explained word fre-
quency and word meaning in a qualitative way, unfortunately, ex-
tensive studies have demonstrated that the frequencies of these
three language units do not follow a power-law distribution, but
follow variants of Poisson distributions, lognormal distributions,
or gamma distributions [6–15].

In the last two decades, the field of natural language pro-
cessing and related areas have constructed numerous datasets
for diverse linguistic tasks [16–18]. Those datasets provide us
opportunities to analyze some other forms of languages, among
which entity is an important one. An entity is a real-world object,
such as persons, locations, and organizations [19,20]. Entities
generally involve important concepts with concrete meanings
and usually act as (part of) the subject or the object or even both
in a sentence.

For example, in the sentence ‘‘Michael Jordan could be an
NBA player, or a professor of University of California, Berkeley’’,
the entity ‘‘Michael Jordan’’ acts as the subject while other two
entities ‘‘NBA’’ and ‘‘University of California, Berkeley’’ are parts
of the object. Because of its importance in language, entities
have been extensively studied and are involved in diverse lin-
guistic tasks, such as named entity recognition [19,20] and entity
linking [21,22].

https://doi.org/10.1016/j.knosys.2023.110942
https://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2023.110942&domain=pdf
mailto:xszhong@bit.edu.cn
mailto:yuxiang@bit.edu.cn
mailto:cambria@ntu.edu.sg
mailto:asjagath@ntu.edu.sg
https://doi.org/10.1016/j.knosys.2023.110942


X. Zhong, X. Yu, E. Cambria et al. Knowledge-Based Systems 279 (2023) 110942

e
w
p
f
a
d
W
m
b
o
s
t
t
b
t
b
g
p
t
l

o
t
a
o
t
s
s
t
l
d
m
l
S
e
t
n
n
e
m
t
f
t
r
c
M
d
m
m
c
t
e

w
f
m
t
m
p

d
3
r
M
o
b

e
i
T
t
o
e
w
w

Table 1
Some examples of entities in English and their corresponding entity lengths
(l). Symbols and punctuations in entities are taken into account during the
calculation.
Entity Entity length (l)

NBA 1
Michael Jordan 2
United Arab Emirates 3
University of California, Berkeley 5
10:00 p.m. on August 20, 1940 7
Human cytomegalovirus (HCMV) major immediate 7

To the best of our knowledge, however, there is no existing lit-
rature that investigates the underlying distribution(s) of entities
hich may provide a better understanding on language use and
rovide insights into designing effective and efficient algorithms
or entity-related linguistic tasks. In this paper, we fill in this gap
nd conduct a thorough investigation on the length-frequency
istributions of entities in different types and different languages.
e aim to fit the length-frequency of entities with a uniform
odel or a family of models. Entity length is defined by the num-
er of words in an entity. Entity length is an important feature
f natural language processing that reflects the complexity and
tructure of texts. Table 1 presents some examples of entities and
heir corresponding lengths. After a careful exploration, we find
hat the length-frequency of entities cannot be well characterized
y pure power-law models, but can be well characterized by
he Marshall–Olkin power-law (MOPL) models that are developed
y Pérez-Casany and Casellas [23]. MOPL models are a family of
eneralized models of power-law models. Compared with pure
ower-law models, MOFL models have more flexibility to adjust
he probabilities of the first few data points while keeping the
inearity of the remaining probabilities.

Specifically, we collect twelve datasets about different types
f entities (e.g., named entities and time expressions) and eigh-
een datasets about entities in different languages (e.g., English
nd French). Those datasets are dramatically diverse from each
ther in terms of their sources, domains, text genres, generated
ime, corpus sizes, and entity types, and those languages have
ignificant differences in terms of their phonetic systems and
pelling systems (see Section 4.1 for details). However, we find
hat the length of these diverse entities demonstrates some simi-
ar characteristics, and the length-frequency distributions of these
iverse entities can be well characterized by a family of MOPL
odels. To evaluate the quality of MOPL models fitting to the

ength-frequency of diverse entities, we use the Kolmogorov–
mirnov (KS) test [24,25] and define an average-error metric to
valuate the goodness-of-fit of the MOFL models and compare
he fitting results with two state-of-the-art power-law models,
amely CSN2009 [26] and LSavg [27], and an alternative log-
ormal model. We conduct experiments on thirty datasets about
ntities in different types and different languages, and experi-
ental results demonstrate that MOPL models well characterize

he length-frequency distributions of diverse entities, and the
itting results of MOPL are much better than the ones of the
hree compared models. Specifically, MOPL achieves much better
esults in the KS test and average-error metric than the three
ompared models. Experimental results also demonstrate that
OPL models fit the length-frequency of entities in an individual
ataset less than one minute, which is comparable with the
ost efficient model LSavg and much better than the CSN2009
odel. This indicates that MOPL models are more suitable to
haracterize the length-frequency of diverse entities than the
hree compared models and that MOPL models are scalable to
ntities in large-scale real-world datasets.1

1 Source codes and data are available at https://github.com/xszhong/MOPL.
2

To summarize, we mainly make in this paper the following
contributions.

• We investigate the underlying distributions of diverse enti-
ties, finding that the length-frequency of entities in different
types and languages can be characterized by MOPL models.
Our finding adds a piece of stable knowledge to the field of
language and provides insights for entity-related linguistic
tasks.

• We demonstrate the superiority of MOPL models against
two state-of-the-art power-law models and a log-normal
model in terms of fitting to the length-frequency of diverse
entities in different types and languages.

• Experiments demonstrate that MOPL is scalable to large-
scale real-world datasets without linearly nor exponentially
increasing the runtime when the number of entities in-
creases.

The remaining of this paper is organized as follows. Sec-
tion 2 reviews the literature about power-law distributions in
languages. Section 3 introduces the MOPL models that we use to
characterize the length-frequency of divers entities. Section 4 re-
ports experimental results and computational efficiency of MOPL
models and compared models fitting to the length-frequency
distributions of entities in different types and different languages.
Section 5 discusses possible implications and limitations of this
paper while Section 6 draws the conclusion.

2. Related works

While power-law distributions have been observed to appear
in numerous natural systems and societal systems [26,28], in
this paper, we are concerned with power-law distributions in
languages. Following we review related works about the power-
law distributions in languages and about the length-frequency
distributions of words and sentences, and discuss the connection
and differences between these related works and our work.

2.1. Power-law distributions in languages

The most famous power-law distribution in languages is the
one in the rank-frequency of words. This linguistic phenomenon
was originally discovered by Estoup [1] and then further explored
by Zipf [2,3]; such linguistic phenomenon is later credited as
Zipf’s law. Zipf’s law reveals that the rth most frequently occur-
ring word in a corpus has the frequency defined by f (r) ∝ r−z ,
here r denotes the frequency rank of a word in the corpus and
(r) denotes its frequency. The Zipf’s law has been observed in
any languages [3–5,29], and the scaling exponent z is observed

o be close to 1. During his exploration, Zipf found as well that the
eaning-frequency of words in a corpus also follows a family of
ower-law distributions.
Besides real languages, researchers have also explored ran-

omly generated texts and genetic regulatory networks [30–
2]. Miller [33,34] and Li [35] found that the rank-frequency of
andom texts also follows power-law distributions. Malone and
aher [36] and Wang et al. [37] found that the rank-frequency
f user passwords from different websites can be characterized
y power-law distributions.
We now discover another form of human languages, namely

ntities, whose length-frequency distributions can be character-
zed by the Marshall–Olkin extended power-law distributions.
here are significant differences between power-law distribu-
ions in the length-frequency of entities and in the rank-frequency
f words. Firstly, the meanings and functions of words and of
ntities in a sentence are different. In the rank-frequency of
ords, those most frequent words are always auxiliary words
ithout concrete meanings (random texts and user passwords

https://github.com/xszhong/MOPL
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Table 2
Statistics of datasets about entities in different types. Entity length l is defined by the number of words in an entity.
Dataset Entity type Num of entities Max l Average l StdDev. l

ABSA Aspect terms 9,979 21 1.45 0.89
ACE04 Named entities 29,949 57 2.43 9.29
BBN Named entities 98,427 15 1.26 0.36
BioMed Biomedical entities 450,729 86 1.80 4.05
CoNLL03 Named entities 35,087 14 1.45 0.48
COVID19 Pandemic entities 10,260,797 117 1.27 0.63
LitBank Literary entities 13,912 129 2.93 19.66
OntoNotes5 Named entities 155,413 28 1.85 1.58
Re3d Defense entities 3,394 20 2.32 3.20
TimeExp Time expressions 18,484 22 1.80 1.31
Twitter Informal entities 20,515 14 1.39 0.71
WikiAnchor Anchor text 2,690,849 49 2.10 3.09
g

3
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have no concrete meanings as well), while entities generally
involve important concepts with concrete meanings and play
important roles in a sentence, such as the subject and the object.

Secondly, the numbers of their data points are different. In the
ank-frequency of words, an r-rank word appears as a data point,
while in the length-frequency of entities, all the l-length entities
composite a data point. So the number of data points in the rank-
frequency of words is as large as the size of vocabulary in a
corpus, while the number of data points in the length-frequency
of entities is generally less than 100, and our analysis shows
that, in about 93.3% of datasets (28 out of 30), the longest entity
contains no more than 100 words (see Tables 2 and 3).

Thirdly, the scaling exponents of these two kinds of power-law
distributions are different. The scaling exponents in the rank-
frequency of words are observed to approximate to 1, indicating
that these power-law distributions do not have theoretical means
nor finite variances. By contrast, the exponents in the length-
frequency of entities are greater than 2, theoretically indicating
well-defined means in all these power-law distributions; and in
real-world datasets, these power-law distributions have finite
means and variances.

2.2. Length-frequency distributions of words and sentences

A line of researches that is somewhat related to our work is
about the length distributions of words and sentences. According
to a review article by Grotjahn and Altmann [12] and Fucks
[7,8] first theoretically and experimentally demonstrated that the
length-frequency of words in a corpus follows a family of Poisson
distributions. This linguistic phenomenon has been observed in
more than 32 languages [14]. On the other hand, Williams [6]
and Wake [9] observed that the length-frequency of sentences
in different languages can be characterized by a family of log-
normal distributions. Sigurd et al. [15] observed that the length-
frequencies of words and sentences from English, Swedish, and
German corpora can be characterized by variants of log-normal
distributions or gamma distributions.

Unlike the length-frequency of words and sentences that can
be characterized by variants of Poisson distributions, log-normal
distributions, or gamma distributions, we find from experiments
on datasets about entities in different types and different lan-
guages that the length-frequency of entities cannot be charac-
terized by Poisson distributions nor log-normal distributions but
are well characterized by a family of Marshall–Olkin power-
law (MOPL) distributions. Moreover, our extensive experiments
demonstrate that MOPL models characterize the length-frequency
of entities much better than two state-of-the-art power-law mod-
els and one alternative log-normal model and that MOPL models
are scalable to the length-frequency of entities in large-scale
real-world datasets.
3

3. Methodology

We first briefly introduce the discrete power-law distribu-
tions and then detail the Marshall–Olkin power-law (MOPL) mod-
els that we use to characterize the length-frequency distribu-
tions of entities in different types and different languages. Af-
ter that we introduce the Kolmogorov–Smirnov (KS) test [24,
25] and the average-error metric that are used to evaluate the
goodness-of-fit.

3.1. Discrete power-law distribution

The discrete power-law distribution is a special case of the
power-law distributions with discrete values and is defined by
Eq. (1):

P(X = x) =
x−α

ζ (α)
(1)

where x ∈ N+, α > 0 is the scaling exponent, and ζ (α) =

Σ∞

k=1k
−α is the Riemann Zeta function.

Eq. (1) can be written as Eq. (2), which demonstrates the linear
behavior in the log–log scale:

log P(X = k) = −α log x − log ζ (α) (2)

The survival function (SF) of the power-law distribution is
iven by Eq. (3):

F (X) = P(X > x) =
ζ (α, x + 1)

ζ (α)
(3)

where ζ (α, x) = Σ∞

k=xk
−α is the Hurwitz zeta function.

.2. Marshall–olkin power-law distribution

Pérez-Casany and Casellas [23] explore a new form of power-
aw distributions by extending the original power-law func-
ion through the Marshall–Olkin transformation. They extend the
riginal power-law function to a more general function called
arshall–Olkin power-law distribution. This function have two
arameters, α and β , and its survival function (SF) is given as

below:

P(X > x) = G(x; α, β) =
βF (X)

1 − βF (X)
=

βζ (α, x + 1)
ζ (α) − βζ (α + 1)

(4)

where β > 0, α > 1 and β = 1 − β .
The probability mass function (PMF) can be computed through

Eq. (5):

P(X = x) = G(x − 1; α, β) − G(x; α, β)

=
x−αβζ (α) (5)
[ζ (α) − βζ (α, x)][ζ (α) − (β)ζ (α, x + 1)]
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Table 3
Statistics of entities in different languages.
Language Entity type Num of entities Max l Average l StdDev. l

Afrikaans Named entities 13,947 27 1.86 1.87
Arabic Named entities 44,284 41 2.15 6.06
Basque Named entities 4,748 20 1.47 0.62
Bokmal Named entities 13,950 15 1.10 0.19
Croatian Named entities 21,105,675 11 1.95 2.37
Czech Named entities 62,867 9 1.53 0.79
France Named entities 9,836 17 1.41 0.75
German Named entities 12,778 34 1.53 0.91
Italian Named entities 1,071,045 41 2.35 2.37
Netherland Named entities 7,102 9 1.42 0.99
Nynorsk Named entities 12,726 10 1.13 0.25
Polish Named entities 12,038,419 13 1.86 1.16
Romanian Named entities 153,226 30 1.77 1.94
Russian Named entities 3,152,930 12 1.70 1.16
Samnorsk Named entities 29,407 15 1.11 0.22
Slovak Named entities 136 435 11 1.72 1.44
Slovene Named entities 13,055,756 8 2.07 2.03
Ukrainian Named entities 18,347,492 14 2.23 2.31
where x ∈ N+ and ζ (α, x) = Σ∞

k=x+1k
−α stands for the Hurwitz

Zeta function.
The Marshall–Olkin power-law (MOPL) distributions are a

generalization of power-law distributions and overcome some
limitations of pure power-law distributions by introducing a
parameter. Such parameter allows for more flexibility in adjusting
the probabilities of small values while keeping the linearity in
tails. The MOPL models are capable of fitting the concave and
convex issues encountered in realistic situations, and have been
applied to characterize various data such as music compositions
and web page visits [23].

In this paper, we use the MOPL models to characterize the
length-frequency distributions of entities in different types and
different languages.

3.3. Kolmogorov–Smirnov test

Like many previous researches [26,27,37–41], we employ the
Kolmogorov–Smirnov (KS) test [24,25] to examine the goodness-
of-fit. The KS statistic (Dn) quantifies the distance between the
cumulative distribution function (CDF) of a set of data points
(Fn(l)) and the CDF of a theoretic distribution (F (l)), as defined
by Eq. (6):

Dn = sup
l

|Fn(l) − F (l)| (6)

where supl is the supremum of the set of distances. The KS
statistic Dn ∈ [0, 1] is the maximal distance between the two CDF
curves Fn(l) and F (l). The smaller the Dn value is, the better the
theoretic distribution fits the data points.

The KS test can also be used to examine whether two un-
derlying distributions are significantly different. In such case, the
two-sample KS statistic (Dn,m) is defined by Eq. (7):

Dn,m = sup
l

|Fn(l) − Fm(l)| (7)

where Fn(l) and Fm(l) are the CDF curves of two sets of data points.
In the KS test, the null hypothesis (H0) is that the data points

are drawn from a theoretic distribution, where the theoretic dis-
tribution can be any parametric distribution, such as Zipf distribu-
tion, normal distribution, power law distribution, and lognormal
distribution; the alternative (H1) is that the data points are not
drawn from the theoretic distribution. A larger p-value suggests
that it is safer to draw a conclusion that these data points are
not significantly different from the hypothesized distribution. In
two-sample KS test, the null hypothesis (H ′

0) is that the two sets
of data points are drawn from the same underlying distribution,
while the alternative (H ′ ) is that they are not from the same
1

4

distribution. Similarly, a larger p-value suggests that it is safer to
draw a conclusion that the two sets of data points are drawn from
the same underlying distribution.

3.4. Average error

Besides the KS test, we also define a metric called average
error to examine the goodness-of-fit. The average error is defined
by Eq. (8):

Eavg =
1
N

∑
xi

|pN (xi) − p (xi)|
√
pN (xi) · p (xi)

(8)

where pN (x) and p(x) are the probability density functions (PDF)
of the raw data and the hypothesized data. N =| {(xi, pN (xi)} |

stands for the number of data points. Defining the average-error
metric by Eq. (8) is to remove the impact of different sample sizes.
For different models fitting to the same dataset, the smaller the
model achieves the Eavg , the better the model fits the dataset.

4. Experiments

We fit Marshall–Olkin power-law (MOPL) models to twelve
datasets about different types of entities and eighteen datasets
about entities in different languages and compare the fitting re-
sults of MOPL with two state-of-the-art models, namely CSN2009
[26] and LSavg [27], and an alternative log-normal model.

4.1. Datasets

The datasets we use in this paper mainly involve two kinds:
(1) entities in different types and (2) entities in different lan-
guages. Most of these datasets contain annotated entities while
some contain automatically annotated entities. We collect from
both their training and test sets of these datasets for their entities.

4.1.1. Entities in different types
This kind of datasets contains twelve datasets regarding differ-

ent types of entities collected from dramatically diverse sources,
including general named entities [19,20,42], entity mentions [43,
44], time expressions [45–47], aspect terms [48,49], literary enti-
ties [50], defense entities, informal entities [51,52], and domain-
specific entities [53,54] that are well studied in the field of natural
language processing and related areas. In this paper, we use the
term of ‘‘entity’’ to broadly represent these diverse concepts, and
these specific concepts are treated as different types of entities.

In a specific type of entities, researchers may also assign some
pre-defined labels (e.g., PERSON, LOCATION, and ORGANIZATION)
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o these entities. We use ‘‘different types of entities’’ or ‘‘entity
ypes’’ to represent the above general named entities, time ex-
ressions, aspect terms, etc., while use ‘‘different categories of
ntities’’ or ‘‘entity categories’’ to represent these pre-defined
abels. In our analysis, we are concerned with ‘‘different types
f entities’’ and do not care much about ‘‘different categories of
ntities’’. Because each type of entities may also contain different
ategories/labels and can reveal general habits of our humans in
sing language, while a certain category of entities reveal only
ur specific/narrow habit(s). In this paper, we care more about
hose general habits and principles than specific/narrow one(s).
ince English is the most studied language in natural language
rocessing and related areas, we analyze these different types of
ntities in English.
The twelve datasets are (1) ABSA [49,55], (2) ACE04 [56],

3) BBN [57], (4) BioMed [58], (5) CoNLL03 [20], (6) COVID19 [59],
7) LitBank [50], (8) OntoNotes5 [44], (9) Re3d, (10) TimeExp [46,
0–63], (11) Twitter [52,64], (12) WikiAnchor [43]. They are
riefly described below in alphabetical order.
ABSA contains two corpora that are used in SemEval-2014 [49]

and SemEval-2015 [55] for aspect-based sentiment analysis.
While the two corpora have several language units for different
tasks, we are concerned with aspect terms and collect these as-
pect terms for the analysis of their length-frequency distribution.

ACE04 is a benchmark dataset used for the 2004 Automatic
ontent Extraction (ACE) technology evaluation [56]. It consists
f various types of data collected from different sources (e.g.,
ewswire and broadcast news) for the analysis of entities and
elations in three languages: Arabic, Chinese, and English. We use
ts English entities for the analysis of different types of entities,
hile use its Arabic entities for the analysis of entities in different

anguages.
BBN consists of Wall Street Journal articles for pronoun co-

reference and entity analysis [57]. It includes 28 entity cate-
gories in total. We collect all of its entities for analysis, without
considering its entity categories.

BioMed contains fourteen corpora that are developed for the
analysis of biomedical entities. Crichton et al. [58] collect the
fourteen corpora and we can get these corpora from their paper
for the biomedical entities.

CoNLL03 is a benchmark dataset with 1393 news articles
derived from the Reuters RCV1 Corpus, which is collected be-
tween the period of August 1996 and August 1997 [20]. We
collect its entities without entity categories for the analysis of the
length-frequency distribution.

COVID19 is a newly constructed dataset for the analysis of
ntities related to the recent COVID-19 pandemic [59]. We collect
nd analyze its entities for the length-frequency analysis.
LitBank is a dataset collected from 100 different English-

anguage literary articles across over a long period of time and
t is developed for the analysis of literary entities [50].

OntoNotes5 is a large-scale dataset collected from different
ources (e.g., news articles, newswire and web data) over a long
eriod of time for the comprehensive analyses of syntax, co-
eference, proposition, word sense, and named entities in three
anguages (i.e., English, Chinese, and Arabic) [44]. In this paper
e are concerned with its entities in English for analysis.
Re3d2 is a dataset with various documents relevant to the

onflict in Syria and Iraq. The dataset is constructed for the
nalysis of entity and relation extraction in the domain of defense
nd security. We collect its entities for analysis.
TimeExp consists of three corpora that are developed for the

nalysis of time expressions [62,63,65]. These corpora include

2 https://github.com/dstl/re3d.
5

TempEval-3 (including TimeBank [46], TE3-Silver, AQUAINT, and
the Platinum corpus) [61], WikiWars [60], and Tweets [62].

Twitter consists of two corpora whose text is collected from
witter: WNUT16 [64] and Broad Twitter Corpus [52]. These two
orpora are developed for the analysis of entities in informal text.
WikiAnchor treats the anchor text (i.e., the text in the hy-

erlinks) from Wikipedia (the 20110513 version) as entity men-
ions [43]. We collect these entity mentions (i.e., anchor text) for
ength-frequency analysis.

For each of these datasets that contain two or more corpora
i.e., ABSA, BioMed, TimeExp, and Twitter), we simply merge all
he entities from the whole corpora. Note again that we col-
ect from these datasets only their entities for the analysis of
ength-frequency distribution; we do not care about their entity
ategories (or pre-defined labels).
Table 2 reports the entity types and statistics of the twelve

atasets. As mentioned in Section 3.2, the entity length l is de-
ined by the number of words in an entity. Table 2 shows that the
umbers of entities in the twelve datasets are diverse dramati-
ally, ranging from 3394 (Re3d) to 10,260,797 (COVID19); and the
aximal lengths and standard deviations of these entities are also
iverse: the maximal lengths are varied from 14 to 129 and the
tandard deviations are varied from 0.36 to 19.66, respectively.
owever, the average lengths of these entities are comparable
nd range around 2 (only from 1.26 to 2.93). This indicates
hat the average length is a common characteristic among these
iverse entities.

.1.2. Entities in different languages
This kind of datasets contains named entities in eighteen

ifferent languages. These datasets are collected from 2004 Auto-
atic Content Extraction (ACE) evaluation [56], European News-
apers,3 NCHLT Afrikaans Named Entity Annotated Corpus,4
asque EIEC (version 1.0),5 BSNLP 2017,6 Italian KIND [66], Nor-
egian Navnkjenner [67], and RONEC [68].
The eighteen languages include (1) Afrikaans, (2) Arabic,

3) Basque, (4) Bokmal, (5) Croatian, (6) Czech, (7) France, (8)
erman, (9) Italian, (10) Netherland, (11) Nynorsk, (12) Polish,
13) Romanian, (14) Russian, (15) Samnorsk, (16) Slovak, (17)
lovene, and (18) Ukrainian. We do not include English in this
ind of datasets because different types of entities are analyzed in
nglish. Table 3 summarizes the statistics of entities in the eigh-
een languages. It shows that the numbers of these entities are
ignificantly diverse, ranging from 4748 (Basque) to 21,105,675
Croatian). The maximal lengths and standard deviations of these
ntities in different languages are somewhat diverse but not
hat dramatical; while the average lengths of these entities are
omparable, ranging around 2 (specifically, from 1.10 to 2.35).
hese statistics are consistent with corresponding ones of dif-
erent types of entities reported in Table 2. This indicates that
ntities across different types and different languages share some
imilar characteristics.

.2. Compared methods

We evaluate the quality of MOPL models in fitting the length-
requency distributions of entities against two state-of-the-art
odels, namely CSN2009 [26] and LSavg [27], and an alternative

og-normal model.
CSN2009: Clauset et al. [26] propose a maximum-likelihood

itting method, which is denoted by CSN2009, that combines with

3 https://github.com/EuropeanaNewspapers/ner-corpora.
4 https://repo.sadilar.org/handle/20.500.12185/299.
5 http://www.ixa.eus/node/4486?language=en.
6 http://bsnlp-2017.cs.helsinki.fi/shared_task.html.

https://github.com/dstl/re3d
https://github.com/EuropeanaNewspapers/ner-corpora
https://repo.sadilar.org/handle/20.500.12185/299
http://www.ixa.eus/node/4486?language=en
http://bsnlp-2017.cs.helsinki.fi/shared_task.html
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Table 4
Fitting results of MOPL and compared models fitting to the length-frequency distributions of entities in different types. C indicates
the coverage which is defined by the percentage of data covered by a model. Mlog denotes logarithmic mean while Vlog denotes
logarithmic variance.
Dataset MOPL LSavg CSN2009 LogNormal

α̂ β̂ C (%) α̂ C (%) α̂ x̂min C (%) Mlog Vlog C (%)

ABSA 4.07 5.44 99.82 2.34 99.95 3.68 2 28.79 0.26 0.19 100.00
ACE04 2.69 2.50 99.54 1.61 99.97 2.73 4 15.38 0.55 0.51 100.00
BBN 4.74 5.43 99.97 3.03 100.00 6.77 4 1.23 0.16 0.11 100.00
BioMed 2.84 2.17 99.92 2.02 99.99 3.36 4 8.53 0.36 0.33 100.00
CoNLL03 5.83 29.48 99.97 2.51 100.00 5.09 2 36.78 0.28 0.15 100.00
COVID19 3.68 1.94 99.00 2.42 99.99 4.96 4 2.10 0.15 0.13 100.00
LitBank 3.44 14.98 99.47 2.94 99.68 2.61 2 70.99 0.62 0.41 100.00
OntoNotes5 3.71 3.12 99.90 0.73 99.99 5.31 5 1.28 0.22 0.17 100.00
Re3d 3.26 8.79 98.70 1.12 99.82 4.67 6 5.10 0.69 0.55 100.00
TimeExp 4.19 14.15 99.91 1.46 100.00 5.34 4 8.09 0.45 0.26 100.00
Twitter 4.20 5.21 99.91 2.54 99.99 3.86 2 26.19 0.23 0.16 100.00
WikiAnchor 4.21 23.02 100.00 2.55 100.00 3.81 3 24.69 0.58 0.30 100.00
Table 5
Goodness-of-fit testing results of MOPL and compared models fitting to the length-frequency distributions of entities in different types. Dn indicates the KS statistic
efined by Eq. (6). Eavg indicates the average error defined by Eq. (8). DEC indicates the decision to accept or reject the hypothesis H0 that a model well fits the
ata, based on the p-value of the KS test. For each of Dn and Eavg , the best result on each dataset is highlighted in bold.

Dataset MOPL LSavg CSN2009 LogNormal

Dn Eavg DEC Dn Eavg DEC Dn Eavg DEC Dn Eavg DEC

ABSA 1.67E−03 0.18 Accept 4.17E−01 1.48 Reject 2.63E−02 0.35 Reject 3.97E−02 1.28 Reject
ACE04 6.15E−03 0.18 Accept 5.28E−01 1.60 Reject 4.29E−02 0.32 Reject 1.21E−01 1.51 Reject
BBN 6.51E−04 0.43 Accept 2.73E−01 1.88 Reject 1.24E−02 0.25 Accept 5.69E−02 4.61 Reject
BioMed 1.58E−03 0.62 Accept 6.27E−01 2.61 Reject 9.71E−03 0.34 Reject 1.15E−01 3.28 Reject
CoNLL03 3.36E−04 0.32 Accept 3.33E−01 2.34 Reject 4.46E−03 0.36 Accept 6.68E−02 1.11 Reject
COVID19 7.88E−05 1.40 Accept 6.25E−01 3.96 Reject 8.69E−03 0.66 Reject 4.97E−02 11.27 Reject
LitBank 1.73E−03 0.87 Accept 8.00E−01 3.39 Reject 2.00E−02 0.32 Reject 6.50E−02 0.92 Reject
OntoNotes5 2.04E−03 0.51 Accept 3.85E−01 1.60 Reject 1.83E−02 0.30 Accept 5.40E−02 2.66 Reject
Re3d 1.22E−02 0.28 Accept 4.62E−01 1.53 Reject 6.02E−02 0.39 Accept 5.64E−02 0.36 Reject
TimeExp 1.22E−03 0.37 Accept 5.88E−01 4.57 Reject 1.00E−02 0.36 Accept 3.14E−02 0.72 Reject
Twitter 1.24E−03 0.21 Accept 3.33E−01 1.22 Reject 1.92E−02 0.36 Reject 4.02E−02 2.21 Reject
WikiAnchor 1.63E−04 0.92 Accept 2.92E−01 1.12 Reject 1.20E−02 0.59 Reject 1.76E−02 4.46 Reject
goodness-of-fit tests based on the Kolmogorov–Smirnov statistic
to fit power-law distributions to empirical data. CSN2009 esti-
mates the exponent of a power-law model and the minimal value
from which the power-law distribution starts. Besides data fitting,
CSN2009 also adopts the KS test with likelihood ratios to evaluate
the goodness-of-fit of how well a model fits to data. CSN2009
has been the most popular method in the last decade in fitting
power-law distributions.

LSavg : Zhong et al. [27] demonstrate through extensive experi-
ents that least-squares methods can accurately fit to power-law
istributions. They propose a least-squares method to fit power-
aw distributions to empirical data and use an average strategy to
educe the impact of noisy data that deviate from the fitted line.

LogNormal: Log-normal distributions are alternative distribu-
ions that researchers usually use to fit data when considering
ower-law distributions. Therefore, besides CSN2009 and LSavg ,
e also compare MOPL models with the log-normal model in
erms of fitting the length-frequency of entities.

.3. Implementation details

For the experiments of data fitting, we use the zipfextR pack-
ge [23] in the R programming language to implement our method
nd apply the codes of CSN20097 and LSavg8 to the datasets.
or the KS test, we use the dgof 9 [69] and KSgeneral10 [70]
ackages in the R programming language for MOPL, LSavg , and

7 https://aaronclauset.github.io/powerlaws/.
8 https://github.com/xszhong/LSavg.
9 https://cran.r-project.org/web/packages/dgof/index.html.

10 https://github.com/raymondtsr/ksgeneral.
6

the log-normal model, while use CSN2009’s KS-test module for
CSN2009. In experiments, we find that for the same model on
the same dataset, dgof and KSgeneral achieve the same Dn value
(i.e., the KS statistic) but different p-values. This suggests that the
Dn values are accurate while the p-values may not be accurate.
In this paper, we use the dgof package to report the Dn values
and make the final Accept/Reject decisions. All our experiments
are conducted on a Dell PowerEdge R740 server with a 96-CPUs
processor, 256 GB memory, and the CentOS-7 system.

4.4. Experimental results

Tables 4 and 5 report the fitting and goodness-of-fit testing
results of MOPL and the three compared models on the length-
frequency distributions of entities in different types. Specifically,
Table 4 reports the estimated parameters of the models and
the coverages (i.e., percentages of data that models cover) while
Table 5 reports the goodness-of-fit testing results of the models
on the datasets, including Dn, Eavg , and DEC where DEC indi-
cates the decision to accept or reject the hypothesis H0. Fig. 1
visualizes the results of MOPL and the three compared models
fitting to the length-frequency distributions of entities in dif-
ferent types. Table 6 reports the fitting results while Table 7
reports the goodness-of-fit testing results of MOPL and the three
compared models fitting to the length-frequency of entities in
different languages. Figs. 2 and 3 visualize those fittings to the
length-frequency of entities in different languages.

What follows are separate discussions on model fitting and
testing results on the length-frequency of entities in different
types and different languages.

https://aaronclauset.github.io/powerlaws/
https://github.com/xszhong/LSavg
https://cran.r-project.org/web/packages/dgof/index.html
https://github.com/raymondtsr/ksgeneral
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Fig. 1. Plots of MOPL and the three compared models fitting to the length-frequency distributions of entities in different types in the twelve datasets. The horizontal
axis indicates the entity length (l) while the vertical axis indicates the percentage (p(l)).
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.4.1. Results on the length-frequency of entities in different types
Let us first look at the three measures that examine the

oodness-of-fit in Table 5: Dn, Eavg , and DEC . Table 5 shows that
OPL achieves the best results in all the three measures on all the

welve datasets, in comparison with the three compared models.
pecifically, MOPL achieves the performance of Dn in the range

from 7.88E−05 to 1.22E−02 and the Eavg value from 0.18 to 1.40
as well as all the ‘‘Accept’’ across the twelve datasets. By contrast,
LSavg achieves the performance of Dn in the range from 2.73E−01
o 8.00E−01 and the Eavg value from 1.12 to 4.57 as well as all the
‘Reject’’ across the datasets. The three measures that CSN2009
chieves are 4.46E−03∼6.02E−02 for Dn, 0.25∼0.66 for Eavg , and
‘‘Accept’’ and 7 ‘‘Reject’’ for DEC .
7

The three measures of LogNormal are 1.76E−02∼1.21E−01
for Dn, 0.36∼11.27 for Eavg , and all 12 ‘‘Reject’’ for DEC . This indi-
ates that MOPL fits the length-frequency distributions of entities
n different types much better than LSavg and CSN2009, which are
eveloped to fit power-law distributions, and LogNormal, which
s often used as an alternative model for power-law models to fit
mpirical data.
Fig. 1 intuitively visualizes the difference between MOPL and

he three compared models in fitting the length-frequency distri-
utions of entities on the twelve datasets. From Fig. 1 we can see
hat the fittings of MOPL are much better than the ones of the
hree compared models.
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Table 6
Results of MOPL and compared models fitting to the length-frequency distributions of entities in different languages. C indicates
the coverage which is defined by the percentage of data covered by a model. Mlog denotes logarithmic mean while Vlog denotes
logarithmic variance.
Dataset MOPL LSavg CSN2009 LogNormal

α̂ β̂ C (%) α̂ C (%) α̂ x̂min C (%) Mlog Vlog C (%)

Afrikaans 3.42 6.01 99.63 1.59 99.99 4.90 5 4.92 0.44 0.31 100.00
Arabic 2.66 3.02 99.57 2.25 99.96 4.72 14 0.80 0.47 0.45 100.00
Basque 4.91 13.74 99.77 4.25 99.96 5.60 3 8.34 0.29 0.17 100.00
Bokmal 4.69 1.66 99.71 1.58 99.99 4.12 1 99.71 0.06 0.05 100.00
Croatian 3.67 8.78 99.40 2.37 100.00 3.12 2 49.58 0.48 0.32 100.00
Czech 5.08 18.68 99.70 1.98 100.00 4.41 2 39.92 0.32 0.18 100.00
France 3.83 3.73 99.69 2.12 99.95 5.30 4 3.29 0.23 0.18 100.00
German 4.74 13.38 99.82 1.09 99.91 4.53 3 9.38 0.31 0.19 100.00
Italian 3.91 23.10 99.95 0.71 100.00 7.35 9 0.60 0.68 0.33 100.00
Netherland 3.06 1.49 99.34 3.89 100.00 2.74 1 98.47 0.22 0.20 100.00
Nynorsk 4.49 1.95 99.94 1.30 100.00 3.77 1 88.37 0.08 0.06 100.00
Polish 4.79 29.87 99.79 1.82 100.00 3.76 2 56.15 0.49 0.23 100.00
Romanian 3.21 3.81 99.80 2.14 100.00 5.94 8 0.85 0.39 0.30 100.00
Russian 5.12 28.91 99.62 4.06 100.00 4.19 2 49.85 0.41 0.21 100.00
Samnorsk 4.53 1.70 99.98 2.25 100.00 3.95 1 99.63 0.07 0.05 100.00
Slovak 4.24 12.01 99.77 1.24 100.00 3.62 2 45.30 0.40 0.25 100.00
Slovene 3.68 11.37 98.77 0.86 100.00 4.38 4 13.11 0.54 0.33 100.00
Ukrainian 3.98 21.16 99.47 1.83 100.00 4.77 5 7.60 0.63 0.32 100.00
Table 7
Goodness-of-fit testing results of MOPL and compared models fitting to the length-frequency distributions of entities in different languages. Dn indicates the KS
tatistic defined by Eq. (6). Eavg indicates the average error defined by Eq. (8). DEC indicates the decision to accept or reject the hypothesis H0 that a model well
its the data, based on the p-value of the KS test. For each of Dn and Eavg , the best result on each dataset is highlighted in bold.

Dataset MOPL LSavg CSN2009 LogNormal

Dn Eavg DEC Dn Eavg DEC Dn Eavg DEC Dn Eavg DEC

Afrikaans 1.72E−03 0.42 Accept 4.67E−01 2.16 Reject 2.24E−02 0.22 Accept 6.53E−02 0.86 Reject
Arabic 6.07E−03 0.37 Accept 4.33E−01 1.41 Reject 5.66E−02 0.39 Accept 1.24E−01 1.80 Reject
Basque 1.50E−02 0.24 Accept 2.86E−01 1.21 Reject 7.06E−03 0.31 Accept 8.63E−02 0.65 Reject
Bokmal 1.34E−02 0.41 Reject 2.00E−01 0.43 Reject 5.41E−02 0.32 Reject 4.69E−02 1.34 Reject
Croatian 1.53E−02 0.30 Reject 3.00E−01 0.80 Reject 2.08E−02 0.29 Reject 5.88E−02 0.70 Reject
Czech 4.01E−02 0.55 Reject 1.43E−01 0.49 Reject 5.69E−02 1.89 Reject 4.60E−02 1.70 Reject
France 2.13E−03 0.27 Accept 3.33E−01 0.87 Reject 4.92E−03 0.51 Accept 4.49E−02 1.73 Reject
German 2.42E−03 0.20 Accept 4.00E−01 1.69 Reject 2.18E−02 0.32 Accept 6.73E−02 1.16 Reject
Italian 1.16E−02 2.18 Reject 7.69E−01 23.99 Reject 3.47E−02 0.38 Reject 6.89E−02 0.34 Reject
Netherland 8.98E−03 0.32 Accept 2.22E−01 0.34 Reject 1.67E−02 0.29 Reject 7.06E−02 1.86 Reject
Nynorsk 8.90E−03 0.50 Accept 2.00E−01 0.33 Reject 2.17E−02 0.34 Reject 4.03E−02 4.81 Reject
Polish 2.04E−02 2.47 Reject 3.33E−01 8.78 Reject 5.21E−03 0.35 Reject 4.00E−02 2.12 Reject
Romanian 2.74E−02 1.18 Reject 5.45E−01 4.31 Reject 7.06E−03 3.18 Accept 3.72E−02 1.77 Reject
Russian 5.51E−03 0.49 Reject 1.25E−01 0.71 Reject 1.77E−02 0.30 Reject 4.03E−02 1.17 Reject
Samnorsk 2.08E−03 0.57 Accept 1.82E−01 0.36 Reject 1.52E−02 0.25 Reject 2.47E−02 6.81 Reject
Slovak 9.13E−03 0.40 Reject 1.00E−01 0.45 Reject 2.49E−02 0.28 Reject 5.55E−02 1.60 Reject
Slovene 3.63E−02 0.24 Reject 3.75E−01 0.56 Reject 8.79E−03 0.25 Reject 1.70E−02 0.37 Reject
Ukrainian 2.26E−02 0.17 Reject 4.55E−01 1.61 Reject 3.06E−02 0.15 Reject 7.39E−02 0.34 Reject
More importantly, MOPL achieving all the ‘‘Accept’’ on the
welve datasets indicates that MOPL is a suitable model to char-
cterize the length-frequency of entities in different types. The
act that MOPL achieves the best goodness-of-fit testing results
ndicates that MOPL achieves the best estimated parameters. As
hown in Table 4, therefore, the α̂ of MOPL should be consid-
ered as the relatively accurate estimated exponents fitting to the
power-law segments of the length-frequency distributions of en-
tities in different types. All the α̂ of MOPL fitting to these different
types of entities range from 2.69 to 5.83, and most of these α̂
range from 2.69 to 4.74. This indicates that the length-frequency
of entities in different types have stable scaling property.

Let us now look at the fittings of the two state-of-the-art
compared models, LSavg and CSN2009. The α̂ of LSavg are deviated
relatively far away from the α̂ of MOPL. The reason is that LSavg
assumes that a power-law starts from the very beginning of an
empirical dataset, but Fig. 1 shows that such assumption is not
applicable to the length-frequency of entities. This indicates that
a pure power-law model is unsuitable to characterize the length-
frequency of entities in different types. On the other hand, the
α̂ of CSN2009 are deviated slightly from the α̂ of MOPL. The
reason is that CSN2009 adopts a minimum-KS-statistic strategy
8

to choose larger lower bound (i.e., x̂min) and fits only the long
tails. Consequently, CSN2009 discards the majority of data and
achieves low coverages, which are only from 1.23% to 70.99%. By
contrast, other models cover more than 98.70% of data. This result
that CSN2009 achieves low coverage in fitting to empirical data
is consistent with the observation reported in Zhong et al. [27].

4.4.2. Results on the length-frequency of entities in different lan-
guages

Let us first look at the three goodness-of-fit testing measures
in Table 7 as well: Dn, Eavg , and DEC . Table 7 shows that none
of the four models (i.e., MOPL, LSavg , CSN2009, and LogNormal)
can perfectly characterize the length-frequency distributions of
entities in the eighteen languages. The fittings to the length-
frequency of entities in different languages are much worse than
the fittings to the length-frequency of entities in different types. A
possible reason is that some of these datasets in the non-English
languages contain a large number of noises. As we mentioned
above, English is the most studied language in the field of natural
language processing and related areas; other languages are also
studied, but their annotated datasets may not be as accurate as
the datasets in English.
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Fig. 2. Plots of MOPL and the three compared models fitting to the length-frequency distributions of entities in different languages in the first nine datasets. The
horizontal axis indicates the entity length (l) while the vertical axis indicates the percentage (p(l)).
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Another possible reason is that none of our authors are famil-
ar with those languages and cannot guarantee the accuracy of
he annotations for these datasets. Let us now look at the com-
arison among the four models fitting to the length-frequency
f entities. While MOPL does not well characterize the length-
requency distributions of entities in all the eighteen languages,
OPL outperforms the three compared models.
Specifically, MOPL achieves the Dn value in the range from

.72E−03 to 4.01E−02, achieves the Eavg value in the range from

.17 to 2.47, and achieves 8 ‘‘Accept’’ and 10 ‘‘Reject’’ for DEC
cross all the eighteen languages. By contrast, LSavg achieves the
n value from 1.00E−01 to 7.69E−01, achieves the Eavg value
rom 0.33 to 23.99, and achieves all 18 ‘‘Reject’’ for DEC across
he eighteen languages. CSN2009 achieves the Dn value from
.92E−03 to 5.69E−02, achieves the Eavg value from 0.15 to 3.18,
nd achieves 6 ‘‘Accept’’ and 12 ‘‘Reject’’ for DEC .
LogNormal achieves the Dn value from 1.70E−02 to 1.24E−01,

chieves the Eavg value from 0.34 to 6.81, and achieves all 18 ‘‘Re-
ect’’ for DEC . The comparison among the four models fitting to
he length-frequency of entities is intuitively visualized in Figs. 2
nd 3. The fitting and testing results indicate that MOPL is more
uitable to characterize the length-frequency distributions of en-
ities in different languages than LSavg , CSN2009, and LogNormal.
able 6 shows that the α̂ of MOPL fitting to the length-frequency
istributions of entities in different languages range only from
.66 to 5.12, which is consistent with the α̂ of MOPL fitting to
9

different types of entities, as shown in Table 4. This indicates
that the length-frequency distributions of entities in different
languages also have stable scaling property. In terms of data
coverage, MOPL, LSavg , and LogNormal cover almost all the data
(i.e., from 99.91% to 100%), while CSN2009 achieves relatively
low coverages (i.e., lower to 0.60%). Specifically, CSN2009 discards
at least 50% of data in 13 out of 18 languages, and discards
at least 90% of data in 8 out of 18 languages. The low cover-
age of CSN2009 on the length-frequency of entities in different
languages is consistent with the one of CSN2009 on the length-
frequency of entities in different types reported in Table 4 as well
as the observation reported in [27].

4.5. Computational efficiency

Table 8 reports the runtimes of MOPL, LSavg , CSN2009 and
ogNormal fitting to the length-frequency distributions of entities
n different types and different languages.11 Table 8 shows that
hile the runtimes of MOPL fitting to length-frequency of entities

n both different types and different languages are less efficient
han ones of LSavg and LogNormal, they are significantly more

11 Note that the reported runtimes only include the time of the four models
fitting to the length-frequency distributions; they do not include the time of the
KS testing.
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Fig. 3. Plots of MOPL and the three compared models fitting to the length-frequency distributions of entities in different languages in the remaining nine datasets.
he horizontal axis indicates the entity length (l) while the vertical axis indicates the percentage (p(l)).
-

fficient than the ones of CSN2009. Moreover, while the number
f entities in individual dataset ranges from 3394 to 10,260,797 in
ifferent types (see Table 2) and from 4748 to 21,105,675 in dif-
erent languages (see Table 3), the runtime of MOPL performing
n individual dataset ranges only from 41.71 to 409.67 ms, all of
hich are less than one second. That means the runtime of MOPL
either increases linearly nor exponentially as the number of
ntities increases. This suggests that MOPL can be easily applied
n large-scale datasets with high efficiency.

. Discussion

.1. Some implications on entity-related linguistic tasks

We here briefly discuss some implications of this linguistic
henomenon (i.e., the length-frequency of entities in different
ypes and different languages can be characterized by Marshall–
lkin power-law distributions) on entity-related linguistic tasks.
his linguistic phenomenon may be able to explain why many
tatistical models and deep-learning models, such as conditional
andom fields [71], long short-term memory networks [72], and
ransformer [73], can be applied for recognizing all these different
ypes of entities from unstructured text [20,48,49,51–54,74–78].
his linguistic phenomenon may also be able to provide insights
nto analyzing those languages with low-resources.
10
Since entities in different types and different languages share
many common characteristics (e.g., their length-frequency distri-
butions, average lengths, and scaling property), we could transfer
knowledge and resource available in those well-studied lan-
guages to those low-resource languages. We could also apply
those statistical modes and deep-learning models that have demon
strated to be effective and efficient in well-studied languages to
those low-resource languages. Distilling this knowledge about
the length-frequency distributions of entities can also drive us
to design effective and efficient algorithms for specific linguistic
tasks. For example, Zhong et al. [62] found that an average
time expression contains only about two words of which one
is time token and the other is modifier or numeral, and then
they designed proper rules to recognize time expressions from
unstructured text. To apply this linguistic knowledge and achieve
more progress in linguistic tasks, however, we still need to
explore into deeper understanding of this linguistic phenomenon.

5.2. Limitations

While we find that the length-frequency distributions of enti-
ties in different types can be well characterized by Marshall–Olkin
power-law (MOPL) models, and the ones in different languages
can also be roughly characterized by MOPL models, we should
note that our analysis on these datasets about different languages
may be inaccurate because many of these languages are not well
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Table 8
Runtime of MOPL, LSavg , CSN2009, and LogNormal fitting to the length-frequency
istributions of entities in different types and different languages. The unit of
he runtime is millisecond, denoted by ms.
Dataset MOPL LSavg CSN2009 LogNormal

ABSA 188.93 ms 5.89 ms 29.51 ms 6.20 ms
ACE04 293.97 ms 6.40 ms 308.19 ms 7.14 ms
BBN 69.83 ms 6.81 ms 134.39 ms 6.32 ms
BioMed 360.48 ms 7.03 ms 4368.31 ms 7.43 ms
CoNLL03 360.48 ms 5.71 ms 42.93 ms 6.92 ms
COVID19 261.38 ms 7.52 ms 39544.32 ms 27.45 ms
LitBank 409.67 ms 6.78 ms 474.60 ms 6.57 ms
OntoNotes5 96.58 ms 5.60 ms 183.25 ms 8.53 ms
Re3d 111.97 ms 6.20 ms 19.79 ms 6.90 ms
TimeExp 137.48 ms 6.54 ms 59.12 ms 6.66 ms
Twitter 89.37 ms 152.74 ms 53.19 ms 1371.74 ms
WikiAnchor 357.21 ms 7.05 ms 17060.66 ms 12.55 ms
Total 2737.35 ms 224.27 ms 62278.26 ms 1474.41 ms

Afrikaans 312.27 ms 6.34 ms 53.83 ms 6.58 ms
Arabic 224.97 ms 7.13 ms 284.04 ms 6.68 ms
Basque 64.78 ms 6.44 ms 13.29 ms 6.30 ms
Bokmal 92.05 ms 6.13 ms 22.85 ms 6.03 ms
Croatian 73.45 ms 6.09 ms 31483.92 ms 88.09 ms
Czech 69.13 ms 6.50 ms 80.67 ms 6.09 ms
France 79.26 ms 6.48 ms 23.68 ms 7.02 ms
German 168.32 ms 227.47 ms 88.78 ms 783.02 ms
Italian 295.43 ms 6.26 ms 6335.01 ms 9.42 ms
Netherland 41.71 ms 6.84 ms 11.21 ms 6.37 ms
Nynorsk 69.92 ms 6.28 ms 21.86 ms 6.61 ms
Polish 67.35 ms 5.47 ms 20347.38 ms 99.88 ms
Romanian 132.39 ms 6.20 ms 527.88 ms 6.26 ms
Russian 82.65 ms 6.06 ms 4555.56 ms 12.21 ms
Samnorsk 89.67 ms 5.80 ms 41.98 ms 6.03 ms
Slovak 114.66 ms 6.12 ms 185.98 ms 6.17 ms
Slovene 60.35 ms 6.30 ms 15422.35 ms 39.23 ms
Ukrainian 94.12 ms 7.39 ms 37443.65 ms 50.21 ms
Total 2132.46 ms 335.30 ms 116943.92 ms 1152.21 ms

studied in the field of natural language processing and related
areas and we authors do not have sufficient expertise knowledge
to cover our analysis on these different languages.

6. Conclusion

In this paper, we discover that the length-frequency distribu-
ions of entities in different types and different languages can be
haracterized by a family of Marshall–Olkin power-law (MOPL)
odels. Our discovery adds a stable knowledge to the field of lan-
uage and provides some insights into conducting entity-related
inguistic tasks and may also provide a new perspective for future
otential research in understanding the language use. Experimen-
al results on the length-frequency of entities in both different
ypes and different languages demonstrate the superiority of
OPL models against a log-normal model and two state-of-the-
rt power-law models, namely LSavg that is developed by Zhong
t al. [27] and CSN2009 that is developed by Clauset et al. [26]. Ex-
erimental results also demonstrate that MOPL models are scal-
ble to the length-frequency of entities in large-scale real-world
atasets.
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