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Time expression (a.k.a., timex) recognition and normalization (TERN) is a crucial task for downstream research.
However, previous studies have overlooked the critical characteristics of timexes that significantly impact the
task. To gain deeper insights, we conduct an analysis across four diverse English datasets to examine the key
attributes of timex constituents. Our analysis reveals several noteworthy observations, such as: timexes tend
to very short; the majority of timexes contain time tokens; there exist strong mapping relationships between
time tokens and timex types; there exists a priority relationship among timex types; and timex values exhibit
only some standard formats. Based on these insights, we propose a novel general rule-based method termed

XTime' to recognize timexes from free text and normalize them into standard formats. Notably, XTime’s rules
are designed in a general and heuristic manner, enabling its independence of diverse domains and text types.
Experimental evaluations conducted on both in-domain and out-of-domain English datasets demonstrate that
XTime consistently outperforms or performs comparably to representative state-of-the-art methods.

1. Introduction

Time expression (i.e., timex) recognition and normalization (TERN)
is a fundamental task with broad implications for numerous down-
stream research areas and applications, including temporal event ex-
traction and ordering [1-8], timeline construction [9-12], temporal
information retrieval [13-16], temporal reasoning [17,18], and tempo-
ral question answering [19,20]. TERN comprises two primary sub-tasks:
timex recognition and timex normalization. The task of timex recognition
aims to extract timexes from unstructured text. For example, given the
plain text “Zhizhen was born on September 18, 2021”, the goal of timex
recognition is to extract the timex “September 18, 2021”. On the other
hand, timex normalization aims to standardize timexes into specific
formats of type and value, involving two sub-tasks: type classification and
value normalization. For example, in the case of the timex “September
18, 20217, the goal of timex normalization is to classify the timex as
a DATE and normalize its value to “2021-09-18”. Historically, TERN
has been resolved primarily through deterministic rules [21-26] and
machine-learning methods [27-31]. However, deterministic rules often
rely heavily on domain-specific knowledge and necessitate more rules

when applied to new domains; while machine-learning methods may
lack interpretability. To our knowledge, there has been no systematic
analysis of the general statistical characteristics of timex constituents
and the factors that significantly influence timex types and values.

In this paper, we undertake a systematic analysis of timexes from
training sets of four diverse datasets: TimeBank [32], TE3Silver [3],
WikiWars [33], and Tweets [34]. Our analysis delves into the charac-
teristics of constituents, types, and values of timexes, yielding seven
key observations. Firstly, most timexes are very short, with over 80%
containing no more than three tokens (see Observation 1 for details).
Secondly, more than 91.8% of timexes contain at least one time token
(see Observation 2). Thirdly, the lexicon employed to convey time in-
formation is small (see Observation 3). Fourthly, words within timexes
exhibit similar syntactic behavior (see Observation 4). Fifthly, strong
mapping relations exist between time tokens and timex types, with
specific type of time tokens predominantly associated with particular
timex type (see Observation 5). Sixthly, a discernible priority relation-
ship exists among the four timex types: DATE < TIME < DURATION <
SET. Here, A < B signifies a lower priority of timex type A compared

™ This paper is an extension of the conference paper: Xiaoshi Zhong, Aixin Sun, and Erik Cambria. Time Expression Analysis and Recognition Using Syntactic
Token Types and General Heuristic Rules. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pp. 420-429, 2017.
* Corresponding author at: School of Computer Science and Technology, Beijing Institute of Technology, China.
E-mail addresses: xszhong@bit.edu.cn (X. Zhong), cyjin@bit.edu.cn (C. Jin), anmy@bit.edu.cn (M. An), cambria@ntu.edu.sg (E. Cambria).
1 Source codes and datasets are available at https://github.com/xszhong/XTime.

https://doi.org/10.1016/j.knosys.2024.111921

Received 13 December 2023; Received in revised form 9 April 2024; Accepted 6 May 2024

Available online 10 May 2024
0950-7051/© 2024 Elsevier B.V. All rights reserved.


https://www.elsevier.com/locate/knosys
https://www.elsevier.com/locate/knosys
mailto:xszhong@bit.edu.cn
mailto:cyjin@bit.edu.cn
mailto:anmy@bit.edu.cn
mailto:cambria@ntu.edu.sg
https://github.com/xszhong/XTime
https://doi.org/10.1016/j.knosys.2024.111921
https://doi.org/10.1016/j.knosys.2024.111921
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2024.111921&domain=pdf

X. Zhong et al.

to B (see Observation 6). Finally, standard timex values adhere to only
couple of formats, primarily comprising different types of time tokens
and numerals (see Observation 7).

Based on these insights, we propose a general rule-based method
termed XTime to recognize timexes from English unstructured text and
normalize them into standard type and value formats. XTime defines a
type system featuring three kinds of token types: time token, modifier,
and numeral, which serve to group regular expressions (regexes) associ-
ated with time-related tokens and their respective values. These token
regexes, types, and values collectively constitute a set of token triples.
XTime leverages three kinds of meta time information (i.e., token
triples, mapping relations between time tokens and timex types, and
priority relationship among timex types, as detailed in Section 4.1) to
tackle the TERN task through four main steps. Firstly, XTime iden-
tifies time tokens from input text, then identifies time segments by
searching the left- and right-sides of these time tokens and stores this
meta information in a data structure called Metalnfo. Subsequently,
XTime merges adjacent time segments along with their corresponding
Metalnfo instances. Finally, XTime extracts timexes from these time
segments and assigns them standardized types and values based on
the information stored in Metalnfo instances (see Section 4.2). Due to
its heuristic rules built atop token types and its independence from
specific tokens, XTime is domain-agnostic and suitable for a wide range
of domains and text types. It is worth noting that XTime is specifically
tailored for English and all our experiments are conducted on English
datasets.

We evaluate the efficacy of XTime across the three sub-tasks of
TERN (i.e., timex recognition, type classification, and value normaliza-
tion) on four diverse English datasets (i.e., TE-3 [3], WikiWars [33],
Tweets [34], and MEANTIME [35]) against eight representative state-
of-the-art methods, comprising two rule-based methods (i.e., Heidel-
Time [23] and SUTime [25]), five learning-based methods
(i.e., ClearTK [36], UWTime [29], TOMN [37], PTime [38], ARTime
[30]), and one hybrid method (i.e., XTN [39]). Given that the training
sets of TE-3, WikiWars, and Tweets are used in data analysis and
the design of XTime, these datasets are considered as in-domain
datasets. By contrast, MEANTIME is regarded as an out-of-domain
dataset. Experimental results demonstrate that XTime achieves the
best results in type classification across all datasets, both in-domain
and out-of-domain. Additionally, XTime achieves either the best or
the second-best results in value normalization on the three in-domain
datasets, surpassing those state-of-the-art baselines. This underscores
the significance of our observations regarding the characteristics of
timex constituents, types, and values for the TERN task. Notably,
XTime demonstrate significant performance improvements over the
two rule-based baselines across all the sub-tasks on all the datasets,
except for value normalization on MEANTIME. In timex recognition,
XTime performs comparably with those best learning-based baselines
(see Section 5 for details). Our experiments also highlight the pos-
itive correlation between improved timex recognition and enhanced
time normalization performance. Moreover, owing to its light-weight
heuristic rules, XTime runs in real-time and can serve as a versatile yet
high-quality tool for various downstream time-related linguistic tasks,
such as timeline construction and temporal reasoning.

We summarize the contributions made in previous conference pa-
per [34] and in this extension paper as follows.

» Zhong et al. [34] analyze timexes from four diverse datasets and
summarize four characteristics about timex constituents (Obser-
vations 1~ 4). This extension paper analyzes timexes from the
same four datasets and summarizes three more characteristics
about timex types and timex values (Observations 5~ 7).

Zhong et al. [34] propose a type-based method, SynTime, to
recognize timexes from text leveraging token types and heuristic
rules. This extension paper proposes a type-based method termed
XTime (an extension of SynTime) to recognize timexes from text
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and normalize them into standard type and value formats using
three kinds of meta time information. Similar to SynTime, XTime
operates independently of specific domains and text types. More-
over, XTime runs in real-time and can serve as a user-friendly tool
for various time-related tasks.

Zhong et al. [34] conduct experiments on three in-domain datasets
to showcase the efficacy of SynTime in timex recognition. This
extension paper expands the experimental scope to include four
diverse in-domain and out-of-domain datasets. The results demon-
strate that XTime outperforms representative state-of-the-art base-
lines in timex normalization, particularly excelling in type classi-
fication.

The structure of this paper is organized as follows. In Section 2
we provide a comprehensive review of existing literature pertaining to
methods developed for the TERN task. Subsequently, in Section 3, we
present our data analysis and summarize seven key statistical observa-
tions regarding timex constituents, types, and values. Section 4 delves
into the intricate details of our proposed method, XTime. Following
this, Section 5 reports the results of our experimental evaluations and
analyses. Finally, in Section 6, we offer our concluding remarks.

2. Related works

Research on the TERN task has been extensively documented
through the TempEval competitions series [2,3,40-43], although nu-
merous studies exist outside of these competitions. The methods devel-
oped for TERN can generally be categorized into three types, as out-
lined in the survey conducted by Zhong and Cambria [44]: rule-based
methods, machine learning-based methods, and deep learning-based
methods.

2.1. Rule-based methods for TERN

Rule-based time taggers like GUTime, HeidelTime, and SUTime pri-
marily employ deterministic rules to recognize and normalize timexes
[21-26,45]. Many of these system are designed to handle the end-
to-end TERN task (e.g, HeidelTime and SUTime). Some time taggers
adopt hybrid methods, combining learning methods for timex recog-
nition with rule-based methods for timex normalization. For example,
ManTime [46], CogCompTime [39,47] integrate learning methods for
timex recognization while develop rules for timex normalization. Syn-
Time defines three kinds of token types and a set of general heuristic
rules for timex recognition [34]. Additionally, Bethard [48] proposes
a synchronous context free grammar (SCFG) for time normalization,
later extended by Escribano et al. [39] for both English and Spanish.
Rule-based time taggers have demonstrated strong performance in
TempEval competitions [2,3], with SynTime showing promising results
on datasets such as TimeBank, WikiWars, and Tweets [34,49,50].

2.2. Machine learning-based methods for TERN

Learning-based methods primarily extract features from text and ap-
ply statistical models on these features for TERN. For instance, [27] de-
fine a compositional grammar and employ an EM-style method to learn
a latent parser for TERN. UWTime [29] leverages a combinatory cate-
gorial grammar (CCG) and employ L1-regularization to learn linguistic
information from context for TERN. Ning et al. [47] formulate TER as
a text-chunking problem and employ a basic machine-learning method
to recognize chunks corresponding to time expressions. Ding et al. [30]
propose to automatically generate rules from training data, while [51]
further parse timexes obtained from these rules using a distantly su-
pervised neural semantic parser for timex normalization. In fact, most
learning-based methods incorporate rule-based elements to determine
the final timex values, such as TIPSem [52] and ClearTK-TimeML [36].
Additionally, Zhong and Cambria [37] propose a constituent-based tag-
ging scheme under conditional random fields (CRFs) to model timexes
for timex recognition and such constituent-based tagging scheme for
named entity recognition as well [53,54].
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Table 1
Statistics of the four datasets used for data analysis.
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Dataset #Docs #Words #Timexes

#DATE #TIME #SET #DURATION

TimeBank 183
TE3Silver 2452
WikiWars 22
Tweets 942

61,418 1243
666,309 12,739
119,468 2671

18,199 1129

1016 22 16 189
11,133 192 68 1346
2247 118 13 258
761 181 36 151

2.3. Deep learning-based methods for TERN

Neural networks and deep-learning methods have been increasingly
utilized for modeling and recognizing timexes [31,39,55-65]. [57] em-
ploy distributed representations and artificial neural networks to model
time expressions, exploring various configurations of layers, sizes, and
normalization techniques to recognize Spanish time expressions from
unstructured text. In a similar vein, [59] utilize a graph convolutional
network (GCN) to jointly exploit syntactic and temporal graph struc-
tures within documents, facilitating the inference of document creation
dates. Chen et al. [60] investigate the modeling of time expressions
using pre-trained word representations, delving into the necessity of
contextualization and the resource requirements for recognizing time
expressions within free text. Furthermore, [63] leverage a sequence-
to-sequence encoder with contextual entity embeddings and negation
constraints to resolve date-time entities in scheduling tasks. In an-
other study, Almasian et al. [64] introduce two popular pre-trained
transformer-based models to model time expressions and general tem-
poral information. Laparra et al. [58] normalize clinical timexes by
a neural-network method while [65] normalize multilingual timexes
with masked language models. Lastly, [31] leverage two cutting-edge
multilingual models to model time expressions across multiple lan-
guages by transferring knowledge from multiple source languages to
the low-resource target language.

XTime is naturally a rule-based time tagger specifically tailored for
English. Distinguished from conventional rule-based methods, XTime
adopts a heuristic and flexible rule design methodology, rendering
it versatile and applicable across diverse domains and text types. In
contrast to both categories of learning-based methods, XTime is rooted
in a systematic analysis, providing comprehensive insights and de-
tailed explanation for experimental results. Additionally, XTime boasts
a light-weight architecture, enabling its real-time processing capabili-
ties.

3. Data analysis

3.1. Datasets

We conduct an analysis on three benchmark datasets (i.e., Time-
Bank [32], WikiWars [33], and Tweets [34]) and one automatically
labeled dataset (i.e., TE3Silver [3]) to investigate the characteristics
of timexes regarding their constituents, types, and values. TimeBank
comprises 183 news articles and served as a benchmark dataset in
the series of TempEval competitions [1-3]. TE3Silver, a significantly
larger dataset, consists of 2452 news articles and was also utilized
in TempEval-3 [3]. WikiWars is a domain-specific dataset sourced
from Wikipedia articles detailing 22 famous wars. Since the original
WikiWars dataset lacks annotations for its timex types, we manually
annotate these types to facilitate analysis, as elaborated in Section 5.1.
Tweets represents a collection of informal text data, comprising 942
tweets collected from Twitter. Table 1 presents a summary of the
statistics pertaining to these four diverse datasets.
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Fig. 1. Length distribution of timexes in the four datasets.

Table 2

Different statistics of timex constituents. The second column (“Avg Length”) indicates
the average length of timexes. The third column (“Percent”) indicates the percentage
of timexes that contain at least one time token. The fourth column (“#Distinct Words”)
indicates the number of distinct words in timexes. The final column (“#Distinct Time
Tokens”) indicates the number of distinct time tokens in timexes.

Dataset Avg length Percent #Distinct words #Distinct time tokens
TimeBank 2.00 94.61 130 64
TE3Silver 1.70 96.44 214 80
WikiWars 2.38 91.81 224 74
Tweets 1.51 96.01 107 64

3.2. Observations

We conduct an analysis on timexes from TimeBank, TE3Silver, and
the training sets of WikiWars and Tweets.? Our analysis yields seven
main observations. Despite the diverse nature of the four datasets,
encompassing variations in corpus sizes and domains, we observe
strikingly similar characteristics in the constituents, types, and values
of their respective timexes.

Observation 1. Timexes are very short. More than 80% of timexes contain
no more than three words and more than 90% of timexes contain no more
than four words.

Fig. 1 depicts the length distribution of timexes across the four
datasets.® Despite originating from diverse sources, including news
articles, Wikipedia articles, and tweets, with variations in text lengths,
a notable consistency emerges in the distribution of timex lengths.

Specifically, the proportion of one-word timexes spans from 36.23% in

2 Note that our analysis focuses solely on the training sets rather than the
whole datasets for the purpose of investigating the characteristics of timex
constituents, types, and values. TE3Silver is only utilized for analyzing timex
constituents (see Observations 1~ 4), while it is utilized for analyzing timex
types and values (see Observations 5~ 7) due to its timex labels not being
considered as ground-truth.

3 The length-frequency distribution of timexes is further analyzed together
with other entities in Zhong et al. [66].
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Table 3
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Top 10 POS tags assigned to the words in timexes. Frequency (Fr.) indicates the number of times that a POS tag is assigned to words in
timexes; percentage (Pr.) is based on its assignments to words in timexes and all words in documents.

TimeBank TE3Silver WikiWars Tweets

Tag Fr. Pr. Tag Fr. Pr. Tag Fr. Pr. Tag Fr. Pr.
NN 587 6.66 NNP 6902 8.77 CD 2113 67.85 NN 572 15.27
DT 396 7.16 CDh 4582 22.11 NNP 1294 8.87 CD 323 55.40
Ccb 351 11.60 NN 3233 3.26 NN 783 5.70 RB 189 25.40
JJ 347 8.74 DT 2080 3.15 DT 582 4.67 DT 161 18.05
NNP 336 5.09 JJ 1940 3.82 IN 363 2.48 NNP 155 6.55
NNS 156 4.17 NNS 1356 3.19 JJ 328 3.82 JJ 118 12.38
RB 162 9.44 RB 597 3.52 RB 261 8.23 NNS 116 18.10
IN 76 1.13 IN 512 0.62 NNS 234 3.82 IN 20 1.24
, 20 0.61 , 175 0.56 , 171 2.80 JJR 10 17.86
cc 9 0.60 cc 69 0.38 VBG 28 1.50 VBP 9 2.72

WikiWars to 62.91% in Tweets. This suggests a tendency, particularly
prevalent in informal communication, to employ succinct expressions
for conveying time information. The second column of Table 2 provides
insights into the average length of timexes, revealing an average length
of approximately two words per timex.

Observation 2. More than 91% of timexes contain at least one time token.

The third column of Table 2 reports the percentage of timexes
containing at least one time token. Notably, we observe that a sig-
nificant majority, at least 91.81% of timexes, contain at least one
time token. It is worth noting that some timexes may not explicitly
contain time tokens but rely on other timexes for temporal context; for
example, in the string “2 to 8 days”, the timex “2” depends on the
timex “8 days”. This observation underscores the importance of time
tokens in composing timexes. Consequently, effective time recognition
necessitates the accurate identification of associated time tokens.

Observation 3. Only a small set of time keywords are used to express time
information.

Upon examining timexes across all four datasets, we observe that
the set of keywords employed to convey time-related information is
small. The fourth and final columns of Table 2 present the counts of
distinct words and distinct time tokens found within timexes. Notably,
these words and tokens are manually normalized before counting, with
their variants disregarded. For example, both “year” and “5yrs” are
counted as a singular time token “year”. Numerals are excluded from
the counting process. The last column of Table 2 shows that despite
variations in dataset sizes, domains, and text types, the numbers of their
distinct time tokens remain comparable.

Across the four datasets, we identify a total of 350 distinct words
and 132 distinct time tokens. Of the 123 distinct time tokens, 45
are shared across all the four datasets, while 101 appear in at least
two datasets. This observation underscores a high degree of overlap
among time tokens across datasets, indicating a substantial intersection
between timexes and their associated time tokens.

Observation 4. Part-of-speech (POS) information cannot distinguish
timexes from common words, but within timexes, POS tags can help dis-
tinguish their constituents.

Table 3 showcases the top 10 POS tags that appear within timexes,
along with their respective proportions over the whole text in each
dataset.” Among the 40 POS tags observed (10 x 4), a striking 37
exhibit percentages below 20%, which the remaining 3 are CD. This
suggests that POS tags alone cannot provide sufficient information to

4 We employ Stanford POS Tagger [67] to obtain these POS tags. Detailed
descriptions of these POS tags can be found at https://www.ling.upenn.edu/
courses/Fall_2003/1ing001/penn_treebank_pos.html.

distinguish timexes from common words. Nevertheless, the most preva-
lent POS tags within timexes are NN*, JJ, RB, CD, and DT. Within
timexes, time tokens usually have NN* and RB, modifiers have JJ
and RB, and numerals have CD. This observation indicates a consistent
behavior among similar constituents with timexes, akin to how linguists
define POS for language [68]. Drawing inspiration from the definition
of POS for language, we are prompted to define a type system for
timexes, recognizing them as integral components of language.

Observation 5. There exist strong mapping relations between time tokens
and timex types: a specific type of time tokens primarily associated with a
particular timex type.

Table 4 presents the distribution of time tokens appearing in each
type of timexes.® The format utilized in Table 4 is denoted as “Pr/Pr!”,
where Pr denotes the percentage of time tokens appearing in the
respective type of the whole timexes, as defined by Eq. (1), while Pr!
denotes the percentage of time tokens appearing in the respective type
of the one-word timexes (note: a one-word timex contains solely a

time token, without any modifier nor numeral), as defined by Eq. (2).

Count(W,T)
Pr(W.,T) = ———— 1
r( ) Count(W) M
where T represents a specific timex type and

T € {DATE, TIME, DURATION, SET}, W denotes a specific type of time
tokens (with 17 types in total; see Table 4 and Table 8), Count(W)
denotes the total number of time tokens of type W, while Count(W,T)
denotes the number of time tokens of type W that appear in all timexes
of type T. For each W, we have Y. Pr(W,T) = 100%.

Pr(W,T) calculates the percentage of time tokens of type W ap-
pearing in the timexes of type T across the whole timexes. By contrast,
Pr'(W,T) calculates this percentage solely based on one-word timexes:

Count'(W,T)
Count!(W)

Priw,T) = 2
where Count' (W) denotes the total number of time tokens of type W
exclusively within one-word timexes, while Count! (W, T) indicates the
number of time tokens of type W appearing in one-word timexes of
type T. Pr'(W,T) indicates, within one-word timexes, the percentage
of time tokens of type W appearing in timexes of type 7. Similar to
Pr(W,T), for each W, we have Y, Pr'(W,T) = 100%.

We utilize the same fifteen time tokens defined by Zhong et al.
[34], with the exception of “TIMEUNIT”, which is further divided into
“TIMEUNIT g7, “TIMEUNIT ”, and “TIMEUNIT ,”. TIMEUNIT g
indicates TIMEUNIT in singular form (e.g., “month” and “day”), TIME-
UNIT . indicates plural and continuous TIMEUNIT (e.g., “months” and
“days”), while TIMEUNIT ;, indicates plural and discrete TIMEUNIT

5 To distinguish between token types, timex types, and Metalnfo attributes,
we underline timex types and start Metalnfo attributes with “.”. For example,
DATE represents a token type, while DATE denotes a timex type, and -DATE
signifies a Metalnfo attribute.
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Table 4
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Percentage of a specific type of time tokens appearing in a particular type of timexes. The format is “Pr/Pr'”, where Pr indicates the percentage calculated using the whole
timexes while Pr' indicates the percentage calculated solely based on one-word timexes. “DURA” indicates DURATION. Values exceeding 50% are highlighted in bold. “~”

indicates the absence of such type of time tokens in the respective timex type.

Time token TimeBank (%) WikiWars (%) Tweets (%)

DATE TIME SET DURA DATE TIME SET DURA DATE TIME SET DURA
YEAR 100/100 -/- /- -/- 99/100 0.8/- -/= 0.5/- 93/95 5.9/5.3 -/- 0.9/-
MONTH 98/100 1.0/- 1.0/- —/- 98/100 1.3/- -/- 0.4/- 97/100 2.8/- -/- -/~
WEEK 93/100 5.4/- 2.0/- ~/- 80/100 20/- -/= /- 81/100 12/~ 7.7/- -/-
DATE ~/= -/= /= /= ~/- ~/- -/= /- 100/100 -/- -/~ ~/~-
TIME - 100/- -/- —/- —/- 100/100 —/- -/- —/- 100/100 —/- —/-
DAYTIME -/- 94/100 5.9/~ -/- -/~ 98/100 -/- 2.4/~ -/~ 96/100 4.2/~ -/-
TIMELINE 99/99 1.2/0.7 -/- /= 100/100 -/- ~/= -/- 99/100 0.3/- -/~ 0.3/-
TIMEUNIT 89/50 /- 1.6/- 9.6/50 69/100 2.5/- 1.0/- 27/- 67/94 2.4/2.0 4.2/- 26/4.1
TIMEUNIT . 16/- -/= -/= 84/100 27/- 2.5/29 -/- 70/71 5.1/~ -/ 1.3/- 94/100
TIMEUNIT -/- /= 89/- 11/- -/- -/- ~/= /= -/- -/- 100/100 ~/~-
SEASON 92/100 -/- 8.3/- /- 100/100 -/- /= -/- 100/100 -/- -/~ -/~
DECADE 80/- -/- -/= 20/- 100100 -/- -/- -/- -/~ -/~ -/~ -/~
PERIODICAL -/- ~/- 75/75 25/25 —/- -/~ 100/- /- -/= —/- 100/100 -/~
DURATION 64/65 -/- /= 37/35 6.7/8.3 -/- -/- 93/92 -/- ~/= 7.1/- 93/100
HOLIDAY -/- -/- -/~ /- 90/100 10/- -/- -/- 88/100 5.9/~ -/~ 5.9/-
TIMEZONE -/- 100/- -/- -/- -/- 100/- -/- -/= -/- 100/- -/- -/-
ERA ~/= ~/= -/~ -/- 100/100 -/- -/- /= ~/~- ~/- -/- -/=

Table 5
Mapping relations between time tokens and timex types.

Time token Timex type

YEAR, MONTH, WEEK, DATE, TIMELINE, ERA, TIMEUNIT g, SEASON, DECADE, HOLIDAY DATE

TIME, DAYTIME, TIMEZONE TIME

PERIODICAL, TIMEUNIT SET

TIMEUNIT ., DURATION DURATION

(e.g., “Septembers” and ““Springs”). Such division is due to TIMEUNIT
s being generally classified as the timex type DATE (e.g., “this month”
and “this day”), TIMEUNIT . being classified as DURATION (e.g., “8
months” and “3 days”), and TIMEUNIT , being classified as SET (e.g,
“Septembers” and “Springs”).

Table 4 presents that a particular type of time tokens predominantly
appear in a specific type of timexes across both the whole timexes and
only the one-word timexes. Precisely, YEAR, MONTH, WEEK, DATE,
TIMELINE, TIMEUNIT g, SEASON, DECADE, HOLIDAY, and ERA are
primarily associated with DATE. TIME, DAYTIME, and TIMEZONE are
primarily with TIME. TIMEUNIT . and DURATION are primarily with
DURATION. PERIODICAL and TIMEUNIT j, are primarily with SET.
These high percentages indicate robust mapping relations between time
tokens and timex types. For example, 100% of TIME appearing in TIME
suggests that the presence of a TIME token in a timex will invariably
result in its classification as TIME. Particularly, when focusing solely
one-word timexes, the majority of these percentages escalate to excep-
tionally high levels, with many reaching 100%. This underscores the
robustness of these mapping relations, as depicted in Table 5.

It is worth noting that not all the instances of a specific type
of time tokens are exclusively associated with a particular type of
timexes. This is because a timex may encompass multiple time tokens
or modifiers/numerals that collectively influence the timex’s final type.

Observation 6. There exists a general priority relationship among the four
timex types: DATE < TIME < DURATION < SET. Modifiers and numerals
may elevate a timex from a lower-priority type to a higher one.

Table 6 displays the occurrences of time tokens from a particular
timex type in the remaining three timex types. Here, “{-}” denotes
the set of time tokens listed in Table 5 that map to the respective
timex type. For example, {TIME} denotes the three time tokens TIME,
DAYTIME, and TIMEZONE that map to the timex type TIME.

Table 6 reveals several patterns: (1) time tokens {DATE}®
(i-e., YEAR and other nine time tokens) extensively appear in the other

6 Note that {DATE} denotes the set of time tokens that map to the timex
type DATE, instead of the timex type DATE.

Table 6

Number of time tokens that map to a timex type appearing in other three types of
timexes. “{-}” denotes the set of time tokens in Table 5 that map to the timex type,
e.g., {TIME } denotes the time tokens TIME, DAYTIME, and TIMEZONE that map to
TIME.

Dataset Time tokens Timex type
DATE TIME DURATION SET

{DATE} _ 24 2 11
. {TIME} 0 - 0 2
TimeBank — pURaTION) 0O 0 - 0
{SET) 0 0 1 -
{DATE} - 93 53 0
- {TIME} 0 - 1 0
WikiWars {DURATION} 0 0 - 0
{SET 0 0 0 -
{DATE} - 39 9 8
Tweet {TIME} 0 - 1 5
cets {DURATION} 0 0 - 2
{SET} 0 0 0 _

three timex types, (2) time tokens {TIME} (i.e., TIME, DAYTIME, and
TIMEZONE) widely appear in DURATION and SET but not in DATE,
(3) time tokens {DURATION} (i.e., TIMEUNIT . and DURATION)
widely appear in SET without appearing in DATE or TIME, and (4)
time tokens {SET} (i.e., PERIODICAL and TIMEUNIT j) generally do
not appear in the other three timex types.” This suggests a discernible
priority relationship among the four timex types: DATE < TIME <
DURATION < SET. Here, DATE < TIME indicates a lower priority of
DATE compared to TIME.

This priority relationship implies that if a timex includes a high-
priority time token, then it is unlikely to be classified into a low-priority
type. For example, a timex containing a PERIODICAL will not be clas-
sified as DATE, TIME, DURATION; instead, the timex will be classified

7 The exception of {SET} appearing in DURATION is attributed to an
annotation error.
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Standard formats of timex values under each timex type and the attribution compositions for each format. “DURA” denotes “DURATION”. “CC” indicates a specific century;
“DDD” indicates a specific decade; “YYYY” a specific year; “MM” a specific month; “ww” the week of year; “w” the day of week; “DD” the day of month; “hh” a specific hour;
“mm” a specific minute; “ss” a specific second; “dd” daytime (MO/AF/NI); “SS” a specific season (SP/SU/FA/WI); “N” a specific number; “U” indicates the time unit greater than

a day; “u” indicates the time unit less than a day.

Type Value format Example timex Example value Attribute composition
PRESENT _REF, now PRESENT _REF -TIMELINE
PAST REF, FUTURE_REF
CC 20th century 19 -CENTURY
DDD the late 1960s 196 -DECADE
YYYY 2013 2013 -YEAR
DATE YYYY-MM April 2018 2018-04 -MONTH, -YEAR
I YYYY-MM-XX January day 2013-01-XX ‘MONTH, -YEAR, -TIMEUNIT_S=D,
YYYY-MM-DD March 21, 2013 2013-03-21 -DATE, -MONTH, -YEAR, -NUMBER
EEYYYY 493 BC BC0493 -ERA, -YEAR, -NUMBER
EEYYYY-MM April 480 BC BC0480-04 -MONTH, -YEAR, -ERA
YYYY-Www the last week 2013-W11 -TIMEUNIT_S=W, -WEEKOFYEAR
YYYY-Www-WE this weekend 2013-W40-WE -TIMEUNIT_S=WE
YYYY-SS last summer 2012-SU -SEASON
TIME YYYY-MM-DDThh:mm:ss, 15:00 Saturday 2013-03-23T15:00 -DATE, -WEEK, -TIME
E— YYYY-MM-DDThh:mm,
YYYY-MM-DDThh
YYYY-MM-DDTdd Friday afternoon 2013-03-22TAF ‘WEEK, -DATE, -DAYTIME
PNU, PTNu 24 h PT24H “TIMEUNIT_C, -NUMBER
DURA PXU, PTXu few minutes PTXM ‘TIMEUNIT_C
PNU, PTNu a month P1M -TIMEUNIT_S, -NUMBER
XXXX, XXXX-XX, XXXX- annually XXXX -PERIODICAL, -TIMEUNIT_D
SET XX-XX, XXXX-WXX
— XXXX-XX-XXTdd every morning XXXX-XX-XXTMO -DAYTIME
XXXX-WXX-w every Friday XXXX-WXX-5 “WEEK
XXXX-SS every winter XXXX-WI -SEASON

as SET. Similarly, a timex containing a DAYTIME will not be classified
as DATE, but may be classified as TIME, DURATION, or SET.

In general, a modifier or numeral can elevate a timex to a higher-
priority type. For example, consider the timex “every afternoon”: while
the time token “afternoon” (DAYTIME) typically maps to TIME, the
modifier “every” (FREQUENT) transforms the timex into SET.

Observation 7. Standard timex values exhibit only a few formats, which
are composed of different types of time tokens and numerals.

We observe that each type of timexes has only a limited number
of standard value formats, as summarized in the second column of
Table 7. It shows that despite the potentially vast number of timexes
in a dataset, their value formats remain relatively fixed. Moreover, we
observe that only 0.56% of timexes in TimeBank, 0.08% in WikiWars,
and 0.27% in Tweets have multiple time tokens of the same token
type. This suggests that timex values predominantly consist of different
types of time tokens and numerals. Furthermore, most modifiers have
minimal impact on timex values.

4. Xtime: Timex recognition and normalization with meta time
information and general heuristic rules

XTime defines a comprehensive type system, comprising a set of
token types, to group timex-related tokens and store their assigned
values. Built upon these token types, XTime designs general heuristic
rules to recognize timexes from free text and normalize them into stan-
dard type and value formats. Fig. 2 shows the architecture of XTime,
which operates across three levels: token level, type level, and rule
level. At the type level, token types group timex-related tokens, while
heuristic rules at the rule level operate on these token types rather than
individual tokens. Such design ensures the generality of the heuristic
rules, as they operate on token types such as “YEAR” and “MONTH”
rather than specific tokens like “2021” and “September”. Consequently,
these heuristic rules are applicable across diverse domains and text
types, unaffected by the specifics of individual tokens.

Fig. 3 provides the overview of XTime for the TERN task in practice.
It mainly consists of two components: XTime construction and timex

recognition and normalization. In XTime construction, as shown on
the left-hand side, XTime is initially constructed with three kinds of
meta time information: (1) token triples, (2) mapping relations between
time tokens and timex types, and (3) priority relationship among
timex types. After initial construction, XTime can be directly applied
for the TERN task. Additionally, XTime offers flexibility through easy
expansion; by incorporating timex-related token triples from training
data, it adapts seamlessly to diverse domains and text types. In timex
recognition and normalization, as shown on the right-hand side, XTime
executes through four key steps. Initially, XTime identifies time tokens
from the input POS-tagged text and assigns them token types and
values to form token triples. Surrounding the identified time tokens,
XTime then searches for modifiers and numerals to construct time
segments. Subsequently, these time segments are merged into larger
time segments. Finally, XTime transforms these time segments into
timexes and assigns them pre-defined types and standard-format values.

4.1. Xtime construction

XTime is constructed by importing general heuristic rules to op-
erationalize the functionalities of three crucial kinds of meta time
information: (1) token triples, (2) mapping relations linking time
tokens to timex types, and (3) priority relationship among timex
types. It is important to note that during the construction stage, XTime
does not process any text but rather focuses solely on implementing
the functionalities of these three kinds of meta time information. This
subsection exclusively describes meta time information, while the sub-
sequent subsection delves into intricate details of how general heuristic
rules execute the functionalities of these meta time information when
processing text with XTime.

4.1.1. Token types and token triples

XTime establishes a comprehensive type system for timexes, com-
prising 17 token types for time tokens, 9 token types for modifiers, and
2 token types for numerals. Token types to tokens is like POS tags to
words. For example, “September” is tagged with a POS tag of NNP,
while being assigned a token type of MONTH.
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Rule level General Heuristic Rules

MONTH NUMERAL YEAR TIMEUNITc TIME

y

Token level | geptember/09 18/18  2021/2021 months/M 10:27/10:27 this/null ...

Type level PREFIX ...

Fig. 2. Architecture of XTime. It is organized into three distinct levels: token level, type level, and rule level. At the type level, token types group timex-related tokens and assign
them corresponding values. At the rule level, heuristic rules operate on token types and are independent of specific tokens, ensuring their applicability across various domains and
text types. Examples of token triples include <September, MONTH, 09>, <months, TIMEUNIT., M>, where assigned token values are highlighted in red.

Input POS-tagged Text

Token Triples
(Token Regex, Token
Types, Token Values)

Time Token Identification

v

Time Segment Identification

[—
Mapping Relations and Metalnfo Construction
(from Time Tokens to /

v

Timex Types)
Time Segment Merge and
Priority Relationship G WO
(among Timex Types) ¢
Timex Extraction and

Normalization

XTime Construction

Timex Recognition and Normalization

Output Annotated Text

Fig. 3. Overview of XTime for TERN in practice, with two main components: XTime construction and timex recognition and normalization. The left-hand side shows the XTime
construction with three kinds of meta time information: (1) token triples, (2) mapping relations between time tokens and timex types, and (3) priority relationship among timex

types. The right-hand side shows the main steps of XTime recognizing timexes from free text and normalizing them into standard type and value formats.

Table 8
Token types used in XTime for time tokens, modifiers, and numerals. The final column denotes the number of distinct tokens within each type,
excluding variants. “~” signifies cases where the token type involves digit variations and cannot be counted.
Type Token type Description Examples #Tokens
YEAR year instances 1986, 1989, 2021 -
MONTH month instances February, September 12
WEEK day of week Monday, Sunday 7
DATE date instances 2021-09-18 -
TIME time instances 10:27, 03:45:32 -
DAYTIME time within a day morning, afternoon 27
TIMELINE relative to today yesterday, tomorrow 12
TIMEUNIT § singular time units year, month 15
Time Token TIMEUNIT . continuous time units year(s) 15
TIMEUNIT , discrete time units year(s) 15
SEASON season instances Winter, Fall, Spring 5
DECADE decade instances 1910s, fifties -
HOLIDAY holiday instances Christmas 20
PERIOD period instances daily 9
DURATION duration instances 5-year -
TIME_ZONE time zones GMT, UTC 6
ERA era AD and BC AD, BC 2
COMMON common modifiers the, about, alternate 36
QUANTITATIVE quantitative modifiers some, several, half 7
FREQUENT frequent modifiers each, every 2
OPERATE ,,, prefix operate modifiers next, previous, last 7
Modifier OPERATE g,/ suffix operate modifiers ago, before, later 4
DURA duration modifier old 1
LINKAGE link time tokens and, or, to, - 4
IN_ARTICLE indefinite articles a, an 2
COMMA comma s 1
Numeral NUMBER numbers 20, 2021, 18 -
ORDINAL ordinals third, fifth -
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Some examples of token triples. “null” indicates that the token has no value.

Token triple

Token triple

<“(January| Jan\.?)(’s)?” , MONTH , 01>
<“saturday(’s)?| sat\.?” , WEEK , 6>
<“years| yrs” , TIMEUNIT . , Y>
<“annually” , PERIODICAL , XXXX>

<“Aprils’?| Aprs\.?’?” , TIMEUNIT , , 04>
<“fifteenth| 15th” , ORDINAL , 15>
<“afternoon(’?s)?” , DAYTIME , AF>
<“each| every” , FREQUENT , null>

Time Token. Time tokens are those words that directly express time
information, such as year, season, month, etc. Existing rule-based time
taggers like HeidelTime and SUTime have manually collected a large
number of time-related keywords. XTime defines 17 token types for
time tokens and uses their names similar to Joda-Time classes®: YEAR,
MONTH, WEEK, DATE, TIME, DAYTIME, TIMELINE, TIMEUNIT g,
TIMEUNIT ., TIMEUNIT ,, SEASON, DECADE, PERIODICAL, DU-
RATION, HOLIDAY, TIMEZONE, and ERA.

Modifier. Modifiers appear around time tokens and modify them.
XTime defines 9 token types for modifiers according to their semantic
functions and possible positions within timexes: COMMON, QUANTI-
TATIVE, FREQUENT, OPERATE ,,,, OPERATE g, ,, DURA, LINKAGE,
IN_ARTICLE, and COMMA.

Numeral. Timexes usually contain numerals, which are either time
tokens, e.g., the “2021” in the timex “September 2021”, or modifiers,
e.g., the “10” in the timex “10 days”. XTime defines 2 token types for
numerals: NUMBER and ORDINAL.

Table 8 presents descriptions, examples, and numbers of token types
for time tokens, modifiers, and numerals utilized in XTime.

Given that XTime is an extension of SynTime, which focuses solely
on time recognition, XTime has been enhanced to tackle the end-to-
end TERN task. This enhancement involves a further subdivision of
token types into fine-grained ones, as described earlier and presented
in Table 8. Additionally, XTime utilizes the same token regexes as
SynTime and collects token values from SUTime’ [24] for these token
regexes, in alignment with the annotation standards of TimeML [69]
and TimeBank [32].

These token regexes, token types, and token values collectively form
a set of token triples. Each token triple is composed of a token regex,
a token type, and a token value in the following format:

Token triple :=<token regex, token type, token value>

While all time tokens and numerals are associated with specific
values, Observation 7 suggests that most modifiers do not influence
timex values. Consequently, the token triples of most modifiers lack
assigned values. Table 9 presents some examples of such timex-related
token triples.

4.1.2. Mapping relations from time tokens to timex types

Observation 5 indicates strong mapping relations between time
tokens and timex types. These mapping relations are as summarized
in Table 5. They play a crucial role in XTime for determining the types
of timexes.

4.1.3. Priority relationship among timex types

Observation 6 indicates a general priority relationship among the
four timex types: DATE < TIME < DURATION < SET. This priority
relationship also plays an important role in XTime for determining the
types of timexes.

8 https://www.joda.org/joda-time
9 https://github.com/stanfordnlp/CoreNLP/tree/main/src/edu/stanford/
nlp/time/rules

4.2. Timex recognition and normalization

In this subsection, we elaborate on how XTime utilizes the three
kinds of meta time information alongside general heuristic rules to
recognize timexes from unstructured text and normalize them into
standard type and value formats. This process comprises four key
steps: (1) time token identification, (2) time segment identification and
Metalnfo construction, (3) time segment merge and Metalnfo merge,
and (4) timex extraction and normalization. We provide a step-by-step
illustration of this procedure using the example depicted in Fig. 4.

4.2.1. Time token identification

Identifying time tokens is a straightforward process accomplished
by simply looking all words in input text at the token triples. When
a word matches any of the token regexes for time tokens, XTime
assigns the word a corresponding token type and token value, creating
a pair of <token type, token value>. For example, in Fig. 4, XTime
identifies the word “September” and assigns it the pair <MONTH, 09>,
assigns “2021” the pair <YEAR, 2021>, and assigns “10:27:00” the
pair <TIME, 10:27:00>.

In addition to identifying time tokens, XTime also identifies mod-
ifiers and numerals during the scanning of the input text. Any word
matching the token regexes for modifiers and numerals is likewise
assigned a <token type, token value > pair. In the example illustrated
in Fig. 4, XTime assigns the word “18” the pair <NUMBER, 18> and
assigns “,” the pair <COMMA, null>.

4.2.2. Time segment identification and Metalnfo construction

In this step, XTime primarily identifies time segments from iden-
tified time tokens and stores the meta information into a Metalnfo
structure. This process consists of two main sub-steps: (1) time segment
identification and (2) Metalnfo construction.
Time Segment Identification. The goal of time segment identification
is to search the surroundings of each previously identified time token
for modifiers and numerals, then assemble the time token with any
modifiers and numerals to create a time segment. This searching follows
simple general heuristic rules, where the key idea is to expand the left
and right boundaries of the time token.

Initially, each time token forms an individual time segment. If
a time token is either a PERIOD or DURATION, then no further
searching is required. Otherwise, both the left and right sides of the
time token are searched for modifiers and numerals. During leftward
searching, if a COMMON, FREQUENT, QUANTITATIVE, OPERATE
pre» DURA, NUMBER, ORDINAL, or IN_ARTICLE token type is en-
countered, then the searching continues. Similarly, during rightward
searching, if a OPERATE §,,, NUMBER, or ORDINAL token type is
encountered, then the searching continues. Both leftward and right-
ward searchings terminate when reaching a COMMA or LINKAGE or
a non-modifier/numeral word. The leftward searching does not exceed
the previous time token, and the rightward searching does not exceed
the subsequent time token.!° A time segment comprises exactly one
time token, along with zero or some modifiers/numerals. For example,
as depicted in Fig. 4, XTime identifies three time segments, namely
S;: “MONTH/September NUMBER/18 COMMA/,”, S,: “COMMA/,
YEAR/2021”, and S3: “TIME/10:27:00”.

10 1t is worth noting that such searching operates based on token types rather
than specific tokens themselves.
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1 10:27:00

<MONJH, 09> <NUMBER, 18> <CO)MMA

, null> <YEAR, 2021> <TIME, 10:27:00>

L

~
S1 S2 S3
metalnfol metalnfo2 metalnfo3
-ti Type: DATE .
erll\ezo]}\]II")feHW -timexType: DATE -timexType: TIME
NUMBER: 18 ‘YEAR: 2021 -TIME: 10:27:00
\ J
~
S4
metalnfo4
-timexType: DATE
-YEAR: 2021
-MONTH: 09
‘NUMBER: 18
s J
~
S
metalnfo

-timexType: TIME

-YEAR: 2021
-MONTH: 09
‘NUMBER: 18
-TIME: 10:27:00

4/\

Timex Type: TIME

Timex Value: 2021-09-18T10:27:00

Fig. 4. An example of XTime recognizing and normalizing timexes from free text. XTime firstly assigns each time token a <token type, token value> pair, then searches the
surroundings of time tokens for modifiers and numerals to form time segments and initializes a Metalnfo instance for each identified time segment. Subsequently, XTime merges
some time segments and their corresponding Metalnfo instances, and finally extracts timexes from final time segments and determines their types and values.

Table 10

Attributes defined in the Metalnfo structure. MetaInfo
1 attribute for reference date, and 1 attribute for the
notations start with a “.”.

defines 18 attributes for time tokens and numerals,
timex type of the Metalnfo instance. The attribute

Attribute Description Example value

-refDate reference date 2013-03-22

-timexType timex type of the Metalnfo DATE, TIME, SET, DURATION
-CENTURY century instances 19, 20

-DECADE decade instances 193

‘YEAR year instances 2012, 1956

-MONTH month instances 01~12

-WEEK week instances 1~7

-DAY day instances 1~31

-DATE date instances 1905-02-20, 2021-09-18
-TIMELINE timeline instances PRESENT _REF, FUTURE_REF, PAST REF
-WEEKOFYEAR weeks of year 01~52

‘-TIME time instances 10:27, 03:07:35
-DAYTIME daytime instances MO, AF, NI

-ERA era instances BC, AD

-PERIODICAL periodical instances XXXX-XX-XX

-NUMBER number instances 1, 100

-ORDINAL ordinal instances 1, 100

-TIMEUNIT_S TIMEUNIT ¢ instances Y, M, W, D
-TIMEUNIT_C TIMEUNIT .. instances Y, M, W, D
-TIMEUNIT_D TIMEUNIT ,, instances WE, SP, FA

These is a special category of time segments that do not contain
any time tokens. These time segments depend on other adjacent time
segments for context. For example, in the string “8 to 20 days”, the
token-type sequence of “to 20 days” forms a time segment, while the
token-type sequence of “8 to” forms a dependent time segment.
Metalnfo Construction. Metalnfo is a data structure designed to store
pertinent information regarding identified time segments, facilitating
subsequent determination of timex types and values. This structure
defines 18 attributes for time tokens and numerals, 1 attribute for

reference date, and 1 attribute for the timex type of a Metalnfo instance.
Table 10 presents and elucidates these 20 attributes. To distinguish
Metalnfo attributes from token types, we start attribute notations with
a “.”. For example, DATE denotes a token type while -DATE signifies a
Metalnfo attribute. It is worth noting again that DATE denotes a timex
type, while {DATE } denotes a set of time tokens mapping to the timex
type DATE .

For each identified time segment, XTime generates and initializes a
corresponding Metalnfo instance. Taking the example of the identified
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S
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PREFIX/the PREFIX/last TIME UNIT/week ... said WEEK/Friday

el

S1

(a) Stand-alone time segment to time expression

O/

S

PREFIX/the NUMERAL/third TIME UNIT/quarter PREFIX/of YEAR/1984

S1

(b) Merge adjacent time segments

D/

MONTH/January NUMERAL/13 YEAR/1951

S1

(c) Merge overlapping time segments

S

S

MONTH/June NUMERAL/30 COMMA/, YEAR/1990

S1

(d) Merge overlapping time segments

S1 S
NUMERAL/8 LINKAGE/to NUMERAL/20 TIME UNIT/days

el

S1

(e) Dependent time segment and time segment

Fig. 5. Example time segments and timexes. The above labels are from time segment identification while the below labels are for timex extraction.

time segment S, “September 18,” depicted in Fig. 4, XTime executes
the following tasks in this sub-step:

« Stores the <token type, token value> pairs of the identified time
segment in the respective attributes of the Metalnfo instance.
For example, for the identified time segment “September 18,”
comprising the <MONTH, 09>, <NUMBER, 18>, and <COMMA,
null> pairs, XTime sets the attribute “-MONTH” to “09” and the
attribute “-“NUMBER” to “18” in metalnfo1.

Sets the attribute “-timexType” to the appropriate timex type
based on the time token of the identified time segment, uti-
lizing the mapping relations outlined in Table 4. For example,
XTime sets the attribute “-timexType” of metalnfo1 to the timex
type DATE since the time token ‘“‘September” corresponds to
MONTH, which maps to DATE as per the mapping relations in
Table 5. If the time segment contains a QUANTITATIVE, then the
“.timexType” is set to DURATION; if it contains a FREQUENT,
then the “-timexType” is set to SET.

« Sets the attribute “-refDate”.

4.2.3. Time segment merge and Metalnfo merge

As a timex may comprise multiple time tokens, it may also contain
multiple time segments, of which each is represented by a distinct
Metalnfo instance. To streamline this data, XTime merges adjacent time
segments and some overlapping time segments, forming larger time
segments and consolidating corresponding Metalnfo instances into new
ones.
Time Segment Merge. XTime scans identified time segments from
the beginning to the end. A standalone time segment constitutes a
timex (see Fig. 5(a)). The primary focus lies in handling adjacent or
overlapping time segments. If two time segments s, and s, are adjacent,
then XTime merges them into a new time segment s, (see Fig. 5(b)).
In cases where s; and s, overlap at a shared boundary, the shared
boundary may be a modifier or a numeral. If the shared boundary

10

is neither a COMMA nor a LINKAGE, then XTime merges s, and s,
(see Fig. 5(c)). However, if the shared boundary is a LINKAGE, then
XTime extracts s; as a timex and continues scanning. When the shared
boundary is a COMMA, XTime merges s, and s, only if the previous
and subsequent tokens of the COMMA satisfy three conditions: (1)
the previous token is a time token, NUMBER, or ORDINAL; (2) the
subsequent token is a time token; and (3) the token types of the
previous and subsequent tokens differ (see Fig. 5(d)). It is important
to note that while Fig. 5 showcases these examples with token types
with tokens together, the heuristic rules operate solely on token types.
Metalnfo Merge. When merging time segments into a larger one,
XTime concurrently merges their corresponding Metalnfo instances
into a new Metalnfo instance. During this merging process, XTime
determines the “-timexType” of the new Metalnfo instance by selecting
the higher-priority timex type from the two original Metalnfo instances
being merged. For example, as shown in Fig. 4, the “-timexType” of
the new instance metalnfo is set by TIME since it takes precedence
over the “-timexType” of metalnfo4 (DATE) and metalnfo3 (TIME).
On the other hand, Observation 7 suggests that timex values typically
consist of different types of time tokens and numerals, implying that
different Metalnfo instances within a timex generally possess different
attributes. Consequently, XTime simply amalgamates all attributes from
two Metalnfo instances into a new one. For example, as shown in
Fig. 4, metalnfo1 includes “-MONTH” and ‘“-NUMBER”, metalnfo2
includes “-YEAR”, while metalnfo3 includes “-TIME”. XTime combines
the ““MONTH” and “-NUMBER” attributes from metalnfo1 with the
“.YEAR” attribute from metalnfo2, then further merges these with the
“.TIME” attribute from metalnfo3 into metalnfo.

Following the merging of all individual Metalnfo instances into new
ones, the resulting instance serves as the final Metalnfo instance used
to determine the final type and value of a timex. It is worth noting that
each final time segment corresponds to a single final Metalnfo instance.
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4.2.4. Timex extraction and normalization

In this step, XTime extracts a timex from each final time segment

and assigns the timex pre-defined type and standard-format value based
on the information stored in the corresponding final Metalnfo instance.
Timex Extraction. From a final time segment, the timex is directly
exported as a sequence of tokens from the sequence of token types.
Type Classification. The final type of a timex is determined by the
“.timexType” attribute of the final Metalnfo instance corresponding
to the final time segment. For example, as illustrated in Fig. 4, the
identified timex “September 18, 2021 10:27:00” has its final type
determined by the “-timexType” attribute of the final time segment
metalnfo: TIME.
Value Normalization. Determining the final value of a timex from
the final Metalnfo instance involves two primary sub-steps: deter-
mining value format and determining final value. Let us begin with
the first sub-step of determining value format. Observation 7 indi-
cates that a specific timex type corresponds to a limited set of value
formats. Therefore, for each final Metalnfo instance, XTime firstly
selects candidate value formats from the second column of Table 7
based on its “-timexType”. Subsequently, XTime determines the final
value format from these candidates based on the attribute compo-
sitions of the final Metalnfo instance listed in the last column of
Table 7. For example, as shown in Fig. 4, the “-timexType” attribute
of metalnfo is TIME, prompting XTime to firstly determine candidate
value formats: “YYYY-MM-DDThh:mm:ss”, “YYYY-MM-DDThh:mm”,
“YYYY-MM-DDThh”, and “YYYY-MM-DDTdd”. Then, considering the
attributes of metalnfo (i.e., “.YEAR:2021”, ‘“-MONTH:09”,
“.NUMBER:18”, and “-TIME:10:27:00”), XTime concludes that the
value format for the example timex is “YYYY-MM-DDThh:mm:ss”.

In the second sub-step of determining final value, XTime utilizes
the “attribute:value” information from the final Metalnfo instance to
derive the timex’s final value. Observation 7 suggests that each value
format is composed of different types of time tokens and numerals
corresponding to different types of attributes. Therefore, XTime utilizes
the attribute values to populate the positions in the value format. For
example, as shown in Fig. 4, the attribute value “2021” fills the “YYYY”
position, “09” fills “MM”, “18” fills “DD”, and “10:27:00” “hh:mm:ss”.
Finally, XTime normalizes the example timex into the standard value
“2021-09-18T10:27:00”.

5. Experiments

We evaluate the quality of XTime on four diverse datasets, including
both in-domain and out-of-domain datasets, for the three sub-tasks of
TERN (i.e., timex recognition, type classification, and value normalization)
against eight representative state-of-the-art methods, including both
rule-based and learning-based methods.

5.1. Experimental setup

Datasets. The evaluation of XTime spans across four diverse datasets:
TE-3 [3], WikiWars [33], Tweets [34], and MEANTIME [35]. TE-3
serves as a benchmark dataset widely used in timex analysis evalua-
tions. WikiWars was initially constructed under the TIMEX2 scheme
without timex types. To comprehensively analyze the characteristics of
timex types and values, we manually annotate types for its timexes.
Specifically, we teach two annotators the knowledge about timexes
according to the standards of TimeML [69] and TimeBank [32], then
the two annotators manually assign timex types to all WikiWars timexes
independently. The initial agreement of their annotations is 98.94%,
then they discuss to reach final agreement. Tweets was initially con-
structed for timex recognition and lacked precise annotation for the
types and values of its timexes. To get a high-quality dataset for
evaluation, the same two annotators are trained to correct the types
and values according to TimeML and TimeBank standards. MEANTIME
is a multilingual dataset with 120 English news articles collected from
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Wikinews and translations in Spanish, Italian, and Dutch. Despite TE-3
and MEANTIME containing corpora in different languages, only their
English portions are considered for experiments.

These datasets are categorized into in-domain and out-of-domain
datasets based on their usage during our data analysis and XTime’s de-
velopment. TE-3, WikiWars, and Tweets, used for our data analysis and
XTime’s design, are considered in-domain, while MEANTIME, not used
in these processes, is considered out-of-domain. In terms of splitting
training and test sets, TE-3 utilizes TimeBank as its training set and
TE3Platinum as its test set [3]. For WikiWars and Tweets, we follow
previous research protocols to set their training and test sets. All the
data of MEANTIME serves as the test set. The performance evaluation
of a model is conducted on test sets.

The statistical details of TimeBank, WikiWars, and Tweets are pre-
sented in Table 1 while those of TE3Platinum and MEANTIME are
reported in Table 11.

State-of-the-art Baselines. We compare XTime to eight representative
state-of-the-art methods: HeidelTime [22], SUTime [24], ClearTK [36],
UWTime [29], TOMN [37], PTime [38], ARTime [30], and XTN [39].
HeidelTime and SUTime are rule-based methods, ClearTK, TOMN,
PTime, and ARTime are learning-based methods, while UWTime and
XTN are hybrid methods. Both HeidelTime and SUTime design deter-
ministic rules for the end-to-end TERN task. CearTK derives lexical,
syntactic and semantic features, and applies multiple classifiers like
support vector machines and logistic regression for different sub-
tasks of TERN. TOMN focuses on timex recognition by leveraging
a constituent-based tagging scheme to model timexes under condi-
tional random fields. PTime proposes to automatically generate ab-
stracted patterns and uses extended budgeted maximum coverage
model to select appropriate patterns for timex recognition while AR-
Time learns from training data to automatically generate normalization
rules for timex normalization. ARTime has two versions: ARTime and
ARTime+H. Ding et al. [30] report that ARTime+H performs better
than ARTime, therefore we report the performance of ARTime+H in
this paper. UWTime uses a combinatory categorial grammar and L1-
regularization to learn linguistic information from context for the TERN
task. XTN leverages a learning method based on XLM-RoBERTa for
timex recognition and type classification, and a rule method based on
a synchronous context free grammar for value normalization.
Evaluation Metrics. Like previous researches, we employ the widely
used toolkit of TempEval-3 [3] to report the three standard metrics
Precision (Pre.), Recall (Rec.), and F, (as defined by Egs. (3), (4), and
(5), respectively) under both strict match and relaxed match for the
performance of TERN’s three sub-tasks.

Pre. = _Ir 3
TP+ FP

Rec. = _Tre @
TP+ FN

F = 2 X Pre. X Rec. (5)
Pre. + Rec.

where TP is the number of evaluated targets that are in both ground-
truth and prediction, FP is the number of evaluated targets that are
in prediction but not in ground-truth, while FN is the number of
evaluated targets that are in ground-truth but not in prediction.

Bethard [48] utilizes a metric called normalization accuracy (Acc.),
as defined by Eq. (6), to evaluate the performance of a system in
normalizing gold timexes.

SYS

GOLD ©®
where GOLD is the number of total gold timexes while SY.S is the
number of timexes that are correctly predicted by a system. The task
of normalizing gold timexes is known as gold timex normalization
in Escribano et al. [39] and pure timex normalization in this paper
(see Section 5.2.3), where all timexes are assumed to be correctly
recognized, with 100% Pre., Rec., and F; in timex recognition.

Acc. =
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Table 11

Statistics of TE3Platinum and MEANTIME.
Dataset #Docs #Words #Timexes #DATE #TIME #SET #DURATION
TE3Platinum 20 6375 138 96 4 4 34
MEANTIME 120 13,982 484 400 18 4 62

Table 12

Overall performance of XTime and baselines on the three in-domain datasets. The best results are highlighted in bold while the second best
are underlined. Some results are reported directly from their original papers or previous researches.

Dataset Method Timex recognition Normalization
Strict match Relaxed match Type Value
Pre. Rec. F, Pre. Rec. F,| F, F,
HeidelTime 83.85 78.99 81.34 93.08 87.68 90.30 82.1 77.6
SUTime 78.72 80.43 79.57 89.36 91.30 90.32 80.3 67.4
ClearTK 85.90 79.70 82.70 93.75 86.96 90.23 - -
UWTime 86.10 80.40 83.10 94.60 88.40 91.40 85.4 82.4
TE-3 TOMN 92.59 90.58 91.58 95.56 93.48 94.51 - -
PTime 85.19 83.33 84.25 92.59 90.58 91.58 - -
ARTime+H - - - - - - 86.0 78.7
XTN-D - - - 93.48 93.48 93.48 89.9 76.8
XTN-N - - - 95.31 88.41 91.73 88.7 79.7
XTime 91.43 92.75 92.09 94.29 95.65 94.96 90.7 82.0
HeidelTime 85.20 79.30 82.10 92.60 86.20 89.30 89.3 74.7
SUTime 78.61 76.69 76.64 95.74 89.57 92.55 85.3 38.8
ClearTK 87.69 80.28 83.82 96.80 90.54 93.56 - -
WikiWars UWTime 87.70 78.80 83.00 97.60 87.60 92.30 90.3 78.1
TOMN 84.57 80.48 82.47 96.23 92.35 94.25 - -
PTime 86.86 87.57 87.21 95.98 96.76 96.37 - -
ARTime+H - - - - - - 91.0 47.9
XTime 80.00 80.22 80.11 92.16 92.41 92.29 91.3 75.3
HeidelTime 89.58 72.88 80.37 95.83 77.97 85.98 76.4 71.3
SUTime 76.03 77.97 76.99 88.43 90.68 89.54 82.5 67.4
ClearTK 86.83 75.11 80.54 96.59 83.54 89.59 - -
Tweets UWTime 88.54 72.03 79.44 96.88 78.81 86.92 80.0 82.4
TOMN 90.69 94.51 92.56 93.52 97.47 95.45 - -
PTime 92.92 94.09 93.50 97.92 99.16 98.53 - -
ARTime+H - - - - - - 92.9 89.1
XTime 89.52 94.07 91.74 93.55 98.31 95.87 96.9 93.5

Under pure timex normalization, Acc. is equivalent to Rec. because
SYS is equivalent to TP and GOLD = TP + FN; moreover, the
two metrics Pre. and Rec. have the same value since the number
of evaluated targets in prediction equals to the one in ground-truth,
namely TP + FP = TP + FN.'"' Consequently, under pure timex
normalization, all four metrics Pre., Rec., F|, and Acc. exhibit identical
values.

5.2. Experimental results

We firstly report experimental results on in-domain datasets
(i.e., TE3, WikiWars, and Tweets), and then report the ones on out-
of-domain dataset (i.e., MEANTIME).

5.2.1. Results on in-domain datasets

Table 12 reports the overall performance of XTime and the eight
baselines on the three in-domain datasets in the TERN task. Since
XTime is an extension of SynTime [34], which focuses on timex
recognition, we directly report the performance of timex recognition
from Zhong et al. [34] for XTime. In this paper, we are mainly
concerned with the performance of XTime in timex normalization.
Performance in Timex Normalization.

Table 12 shows that for timex normalization (which contains two
sub-tasks: type classification and value normalization), XTime achieves

1 Note that under pure timex normalization, a system is required to nor-
malize all gold timexes, regardless of whether it can recognize or accurately
normalize them; namely, the system has to assign a type and a value to each
gold timex. Therefore, under pure timex normalization, the number of total
predicted timexes equals to the one of total gold timexes
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five best and six second best results among the total six measures. Par-
ticularly, XTime significantly outperforms the four baselines (i.e., Hei-
delTime, SUTime, UWTime, and ARTime+H) in type classification.
Specifically, XTime achieves the F| in type classification with 90.7%
on TE-3, 91.3% on WikiWars, and 96.9% on Tweets. This confirms the
importance of mapping relations from token times to timex types (see
Observation 5) and the priority relationship among timex types (see
Observation 6) in timex type classification.

XTime achieves the best results in value normalization on TE-3 and
Tweets. The main reason is that XTime’s heuristic rules are designed
under the annotation scheme of TimeML [69] and TimeBank [32],
and both TE-3 and Tweets are constructed under the same annotation
scheme. On WikiWars, XTime performs slightly worse than UWTime
(76.7% vs. 78.1%), mainly because many timexes in WikiWars are
quite descriptive [34] and their values are somewhat deviated from the
TimeML scheme. For example, under the TimeML scheme, the timex
“two days after his arrival in Jerusalem” in WikiWars should be pruned
to “two days”. UWTime leverages combinatory categorial grammar to
capture the information of linguistic structure and learns from training
data to adapt to new annotation scheme. XTime lacks such ability of
adapting to new annotation scheme.

XTime vs. Rule-based Baselines. We particularly compare XTime
with the two rule-based baselines. Table 12 shows that XTime signif-
icantly outperforms HeidelTime and SUTime on all three datasets by
large margins of 2.0~14.4 points in type classification and 0.6~22.3
points in value normalization. Especially on TE-3 and Tweets, the
margins in type classification reach 8.6~14.4 points and the ones in
value normalization reach 5.2~22.3 points. The main reason is that
HeidelTime and SUTime design deterministic rules in a fixed way
without a deep understanding of timex types and values. By contrast,
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Overall performance of XTime and baselines on the out-of-domain dataset, MEANTIME. The best results are highlighted in bold and the second
best are underlined. The results of baselines are reported directly from [39]. Note that for type classification and value normalization, the results
of the two baselines are evaluated under relaxed match, whereas those of XTime are under strict match; consequently, direct comparisons between

XTime and the two baselines may not be appropriate.

Method Timex recognition Normalization
Strict match Relaxed mtch Type Value
Pre Rec. F Pre. Rec. F, F, F,
HeidelTime - - - 94.91 84.71 89.52 85.15 79.69
XTN-D - - - 95.48 91.74 93.57 88.72 76.29
XTN-N - - - 96.37 87.81 91.89 82.31 78.49
XTime 83.58 80.99 82.27 95.74 92.77 94.23 89.88 74.08

XTime leverages three kinds of meta information (i.e., token triples,
mapping relations, and priority relationship) based on characteristics
about timex types and values (see Section 3.2) to design heuristic rules
in a general and flexible way.

XTime vs. Learning-based Baselines. XTime outperforms the two
learning-based baselines, namely UWTime and ARTime, on all three
datasets in type classification. This indicates that the mapping relations
from time tokens to timex types and the priority relationship among
timex types are very strong, extremely useful for timex type classifica-
tion. Learning-based methods might not be able to fully capture such
strong mapping relations and priority relationship. XTime outperforms
UWTime and ARTime on the two TimeML-based datasets, namely TE-
3 and Tweets, in value normalization. This verifies the usefulness
of Observation 7 for timex value normalization under TimeML and
TimeBank annotation scheme.

Performance in Timex Recognition.

XTime significantly outperforms the two rule-based baselines
(i.e., HeidelTime and SUTime) in timex recognition and performs com-
parably with those best results of learning-based baselines in terms of
F, on all three in-domain datasets under both strict match and relaxed
match. Compared to learning-based methods, XTime does not require
training and runs in real-time. This demonstrates the effectiveness and
efficiency of XTime, especially in practice.

5.2.2. Results on out-of-domain dataset

Table 13 presents the overall performance of XTime and the two
multilingual baselines, namely HeidelTime and XTN (which includes
two versions: XTN-D and XTN-N), on the out-of-domain dataset, MEAN-
TIME. The results of HeidelTime and XTN are reported directly from Es-
cribano et al. [39] and all these results are evaluated under relaxed
match.'? Table 13 shows that XTime outperforms HeidelTime and XTN
by at least 0.66 points at F; under relaxed match in timex recognition
and at least 1.16 points at F| in type classification. This underscores
the effectiveness of XTime on out-of-domain dataset and underscores
its practical utility. However, in terms of value normalization, XTime
exhibits lower performance compared to HeidelTime and XTN, with
an F, deficit ranging from 2.21 to 5.61 points compared to the two
baselines. Several factors contribute to this discrepancy.

Firstly, some annotations of MEANTIME differ from those of Time-
Bank and TimeML. For example, in MEANTIME, the timex “12:00 UTC
Monday” is annotated with the value “2009-06-01T12:00Z”, which
includes a “Z” at the end, while in TimeBank, no such “Z” is included.
There are 14 “Z”-ending timexes (which is about 3% of timexes)
in MEANTIME. Additionally, inconsistent annotations exist in MEAN-
TIME; for example, some “now” are annotated as “PRESENT _REF”

12 It is worth noting that [39] report these results of all three sub-tasks
(i.e., timex recognition, type classification, and value normalization) under
relaxed match but do not provide results under strict match. Additionally,
they provide codes for processing output files for evaluation (available at
https://github.com/NGEscribano/XTN-timexes), but do not provide codes of
their model for timex recognition and type classification. Therefore, we do
not report their results under strict match in Table 13.
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while others are assigned specific dates. Similarly, some “today” are an-
notated with specific dates while other are labeled as “PRESENT_REF”.
By contrast, TankBank consistently annotates ‘“now as
“PRESENT_REF” and “today” with specific dates. Secondly, annotation
errors in MEANTIME contribute to the disparity in performance. For
example, a timex “2012” is annotated with the value “2010” (which
should be “2012”), a “2007-08-07” with “2007-07-08” (“2007-08-07");
a “the next six months” with “PM6” (“P6M”). Moreover, errors such
as annotating “weekly” as “P1W” (which should be “XXXX-WXX"),
“decades” as “PXD” (“PXDE”), and mislabeling specific dates for days
of the week (e.g., annotating “Wednesday” as “2009-11-05” (which
should be “2009-11-04”) and “Friday” as “2007-10-20” (“2007-10-
19”)) also contribute to discrepancies. Thirdly, MEANTIME includes
some single words like “this”, “which”, “ongoing”, and “later” as
timexes, whereas XTime does not treat such single words as timexes.

”

5.2.3. Results on pure timex normalization

Let us examine XTime’s performance specifically in the task of pure
timex normalization, where all timexes are assumed to be correctly rec-
ognized, with 100% precision, recall, and F, in timex recognition. The
results of XTime in pure timex normalization are reported in Table 14,
denoted by “XTime in Pure Norm”. The table shows that compared
to its performance in end-to-end TERN task, XTime exhibits superior
performance across all three datasets (including both in-domain and
out-of-domain datasets), with F, improvements ranging from 1.4 to
3.7 points in type classification and from 0.2 to 0.9 points in value
normalization. These improvements underscore the importance of im-
proving timex recognition accuracy in enhancing the performance of
timex normalization.

As described in Section 5.1, under pure timex normalization, all
four metrics Pre., Rec., F;, and Acc. exhibit identical values. Such
equivalence implies that the F, scores of XTime in pure timex nor-
malization can be considered as Acc. results. Consequently, we can
compare these Acc. results to those reported in previous studies con-
ducted on the same datasets. For example, [48] reported an accuracy
of 81.6% for their SCFG method on TE-3 while [39] reported 78.99%
Acc. for their XTN method on TE-3 and 76.86% Acc. on MEANTIME,
specifically focusing on value normalization. Table 14 illustrates that
XTime attains an accuracy of 82.6% in value normalization on TE-3,
surpassing both SCFG and XTN. Conversely, on MEANTIME, XTime
exhibits inferior performance in value normalization compared to XTN
(75.0% vs. 76.86%); the main factors for this discrepancy are discussed
in Section 5.2.2.

5.2.4. Factor analysis

In XTime, token triples and mapping relations are necessary, so we
analyze the impact of the priority relationship among timex types. To
assess its impact, we remove the priority component from XTime by
setting the -timexType of the first Metalnfo as the final timex type.
The results of XTime without priority component are presented in Ta-
ble 14, denoted by “XTime w/o Priority”. Notably, upon removing the
priority component, XTime demonstrates inferior performance in both
type classification and value normalization across all three datasets.
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Table 14
Performance (F,) of XTime in pure timex normalization and factor analysis of priority relationship among timex types.
Method TE-3 WikiWars Tweets MEANTIME
Type Value Type Value Type Value Type Value
XTime 90.7 82.0 91.3 75.3 96.9 93.5 89.9 74.1
XTime in Pure Norm 92.8 82.6 94.7 76.2 98.3 93.7 93.6 75.0
XTime w/o Priority 85.6 78.4 91.0 72.3 89.8 87.3 84.4 71.8

Specifically, there are decreases ranging from 0.3 to 7.1 points in type
classification and from 2.3 to 6.2 points in value normalization. These
results underscore the critical importance of the priority relationship
among timex types for both sub-tasks of timex normalization.

5.2.5. Error analysis

During the evaluation of XTime, three primary types of errors are
identified. Firstly, there are annotation errors present in datasets. For
example, TE-3 annotates “the next decade” with the value “P10Y”
while annotates “the following decade” as “P1DE”. Secondly, there is
a deficiency of time-related keywords, such as descriptive terms like
“tenure” and “digital”, which are not included in XTime’s collection
of token triples. Thirdly, there are instances of incorrect reference
dates, such as XTime normalizing a timex from the Tweets dataset,
“last week”, to “2014-W22” instead of the correct “2014-W21”. Further
analysis of annotation errors specific to the MEANTIME dataset is
elaborated in Section 5.2.2.

5.3. Limitations

While XTime exhibits strong performance across both in-domain
and out-of-domain datasets, it is important to acknowledge three pri-
mary limitations. Firstly, XTime’s design is tailored to the annotation
scheme of TimeML [69] and TimeBank [32]. Consequently, it may
encounter challenges when applied to datasets constructed under dif-
ferent annotation schemes that diverge significantly from TimeML and
TimeBank, such as MEANTIME, which features value formats ending
with a “Z” (i.e., “2009-06-01T12:00Z”), or datasets utilizing alternative
schemes like the SCATE scheme and the SCATE corpus [58]. Secondly,
XTime assumes correct tokenization and POS tagging of words. How-
ever, in practice, word tokenization and tagging may not be error-free
due to limitations in the tools used. For example, the Stanford POS
Tagger may misclassify words, such as assigning VBD to the word “sat”
in the string “friday or sat”, where “sat” should be tagged as “NNP”.
Thirdly, certain datasets may consider some single words (e.g., “this”,
“which”, and “ongoing” in MEANTIME) as timexes, whereas XTime ad-
heres to the TimeBank and TimeML annotation standards and exclude
such single words from consideration as timexes.

6. Conclusion and future work

Through an analysis of timexes across four diverse datasets, we
identify seven important characteristics pertaining to the constituents,
types, and values of these timexes. Leveraging these insights, we intro-
duce XTime, a rule-based method designed to recognize and normal-
ize timexes from unstructured text into standardized type and value
formats. By incorporating three kinds of meta time information and
employing general heuristic rules, XTime demonstrates superior perfor-
mance in timex normalization across both in-domain and out-of-domain
datasets compared to representative state-of-the-art models. Further-
more, XTime exhibits competitive performance in the task of timex
recognition. Notably, XTime’s domain-agnostic nature and light-weight
architecture enable real-time execution, making it a versatile tool appli-
cable across various domains and text types. With its potential to serve
as a reliable timex tagger for diverse time-related linguistic tasks, future
improvements may involve leveraging transfer learning techniques to
adapt to alternative annotation schemes and harnessing large language
models like ChatGPT to augment data for few-shot timex recognition
and normalization.
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