Time Expression Analysis and Recognition Using Syntactic Token Types and General Heuristic Rules

Xiaoshi Zhong and Erik Cambria Computer Science and Engineering Nanyang Technological University {xszhong, cambria}@ntu.edu.sg

Outline

• Time expression analysis

- Datasets: TimeBank, Gigaword, WikiWars, Tweets
- Findings: short expression, occurrence, small vocabulary, similar syntactic behavior

• Time expression recognition

- SynTime: syntactic token types and general heuristic rules
- Baselines: HeidelTime, SUTime, UWTime

Time Expression Analysis

• Datasets

- TimeBank
- Gigaword
- WikiWars
- Tweets

• Findings

- Short expression
- Occurrence
- Small vocabulary
- Similar syntactic behaviour

Example time expressions:

now today Friday February the last week 13 January 1951 June 30, 1990 8 to 20 days the third quarter of 1984

. . .

Time Expression Analysis - Datasets

• Datasets

- TimeBank: a benchmark dataset used in TempEval series
- Gigaword: a large dataset with generated labels and used in TempEval-3
- WikiWars: a specific domain dataset collected from Wikipedia about war
- Tweets: a manually labeled dataset with informal text collected from Twitter

• Statistics of the datasets

Dataset	#Docs	#Words	#TIMEX
TimeBank	183	61,418	1,243
Gigaword	2,452	666,309	12,739
WikiWars	22	119,468	2,671
Tweets	942	18,199	1,127

The four datasets vary in source, size, domain, and text type, but we will see that their time expressions demonstrate similar characteristics.

• Short expression: time expressions are very short.

Time expressions follow a similar length distribution

80% of time expressions contain ≤ 3 words 90% of time expressions contain ≤ 4 words

Average length of time expressions

Dataset	Average length
TimeBank	2.00
Gigaword	1.70
WikiWars	2.38
Tweets	1.51

Average length: about 2 words

• Occurrence: most of time expressions contain time token(s).

Percentage of time expressions that contain time token(s)

Dataset	Percentage
TimeBank	94.61
Gigaword	96.44
WikiWars	91.81
Tweets	96.01

Example time tokens (red):

now today Friday February the last week 13 January 1951 June 30, 1990 8 to 20 days the third quarter of 1984

. . .

• **Small vocabulary**: only a small group of time words are used to express time information.

Dataset	#Words	#Time tokens
TimeBank	130	64
Gigaword	214	80
WikiWars	224	74
Tweets	107	64

Number of distinct words and time tokens in time expressions

Number of distinct words and time tokens across four datasets

 #Words	#Time tokens
350	123

45 distinct time tokens appear in all the four datasets. That means, time expressions highly overlap at their time tokens.

Overlap at year

- **Similar syntactic behavior**: (1) POS information cannot distinguish time expressions from common text, but (2) within time expressions, POS tags can help distinguish their constituents.
 - (1) For the top 40 POS tags (10 × 4 datasets), 37 have percentage lower than 20%, other 3 are CD.
 - (2) Time tokens mainly have NN* and RB, modifiers have JJ and RB, and numerals have CD.

Time Expression Analysis – Eureka!

- **Similar syntactic behavior**: (1) POS information cannot distinguish time expressions from common text, but (2) within time expressions, POS tags can help distinguish their constituents.
 - (1) For the top 40 POS tags (10 × 4 datasets), 37 have percentage lower than 20%, other 3 are CD.
 - (2) Time tokens mainly have NN* and RB, modifiers have JJ and RB, and numerals have CD.

When seeing (2), we realize that this is exactly how linguists define part-of-speech for language; similar words have similar syntactic behaviour. The definition of part-of-speech for language inspires us to define a type system for the time expression, part of language.

Our Eureka! moment

Time Expression Analysis - Summary

• Summary

• On average, a time expression contains two tokens; one is time token and the other is modifier/numeral. And the time tokens are in small size.

• Idea for recognition

• To recognize a time expression, we first recognize the time token, then recognize the modifier/numeral.

Time Expression Analysis - Idea

• Summary

• On average, a time expression contains two tokens; one is time token and the other is modifier/numeral. And the time tokens are in small size.

• Idea for recognition

• To recognize a time expression, we first recognize the time token, then recognize the modifier/numeral.

20 days; this week; next year; July 29; ...

Time Expression Analysis - Idea

• Summary

• On average, a time expression contains two tokens; one is time token and the other is modifier/numeral. And the time tokens are in small size.

• Idea for recognition

• To recognize a time expression, we first recognize the time token, then recognize the modifier/numeral.

Time token 20 days; this week; next year; July 29; ...

Time Expression Analysis - Idea

• Summary

• On average, a time expression contains two tokens; one is time token and the other is modifier/numeral. And the time tokens are in small size.

• Idea for recognition

• To recognize a time expression, we first recognize the time token, then recognize the modifier/numeral.

Time Expression Recognition

• SynTime

- Syntactic token types
- General heuristic rules

• Baseline methods

- HeidelTime
- SUTime
- UWTime

• Experiment datasets

- TimeBank
- WikiWars
- Tweets

Time Expression Recognition - SynTime

- Syntactic token types
- General heuristic rules

Time Expression Recognition - SynTime

- Syntactic token types A type system
 - Time token: explicitly express time information, e.g., "year"
 - 15 token types: DECADE, YEAR, SEASON, MONTH, WEEK, DATE, TIME, DAY_TIME, TIMELINE, HOLIDAY, PERIOD, DURATION, TIME_UNIT, TIME_ZONE, ERA
 - Modifier: modify time tokens, e.g., "next" modifies "year" in "next year"
 - 5 token types: PREFIX, SUFFIX, LINKAGE, COMMA, IN_ARTICLE
 - Numeral: ordinals and numbers, e.g., "10" in "next 10 years"
 - 1 token type: NUMERAL
 - Token types to tokens is like POS tags to words
 - POS tags: next/JJ 10/CD years/NNS
 - Token types: next/prefix 10/NUMERAL years/TIME_UNIT

Time Expression Recognition - SynTime

- General heuristic rules
 - Only relevant to token types
 - Independent of specific tokens

SynTime – Layout

Token level: time-related tokens and token regular expressionsType level: token types group the tokens and token regular expressionsRule level: heuristic rules work on token types and are independent of specific tokens

SynTime – Overview in practice

A sequence of tokens:

the third quarter of 1984

Assign tokens with token types

A sequence of tokens:

A sequence of token types

PREFIX NUMERAL TIME_UNIT PREFIX YEAR

A sequence of token types

Export a sequence of tokens as time expression

Time expression:

the third quarter of 1984

Time Expression Recognition - Experiments

• SynTime

- SynTime-I: Initial version
- SynTime-E: Expanded version, adding keywords to SynTime-I (Add keywords under the defined token types and do not change any rules.)

• Baseline methods

- HeidelTime: rule-based method
- SUTime: rule-based method
- UWTime: learning-based method
- Experiment datasets
 - TimeBank: comprehensive data in formal text
 - WikiWars: specific domain data in formal text
 - Tweets: comprehensive data in informal text

Overall performance. The **best results** are in boldface and the <u>second best</u> are underlined. Some results are borrowed from their original papers and the papers indicated by the references.

Dataset	Methods	Strict Match			Relexed Match		
	IVICUIUUS	Pr.	Re.	F1	Pr.	Re.	F1
TimeBank	HeidelTime(Strotgen et al., 2013)	83.85	78.99	81.34	93.08	87.68	90.30
	SUTime(Chang and Manning, 2013)	78.72	80.43	79.57	89.36	91.30	90.32
	UWTime(Lee et al., 2014)	86.10	80.40	83.10	94.60	88.40	91.40
	SynTime-I	<u>91.43</u>	<u>92.75</u>	<u>92.09</u>	94.29	95.65	94.96
	SynTime-E	91.49	93.48	92.47	93.62	95.65	<u>94.62</u>
WikiWars	HeidelTime(Lee et al., 2014)	85.20	79.30	82.10	92.60	86.20	89.30
	SUTime	78.61	76.69	76.64	<u>95.74</u>	89.57	<u>92.55</u>
	UWTime(Lee et al., 2014)	87.70	78.80	83.00	97.60	87.60	92.30
	SynTime-I	80.00	80.22	80.11	92.16	<u>92.41</u>	92.29
	SynTime-E	79.18	83.47	81.27	90.49	95.39	92.88
Tweets	HeidelTime	89.58	72.88	80.37	<u>95.83</u>	77.97	85.98
	SUTime	76.03	77.97	76.99	88.43	90.68	89.54
	UWTime	88.54	72.03	79.44	96.88	78.81	86.92
	SynTime-I	<u>89.52</u>	<u>94.07</u>	<u>91.74</u>	93.55	<u>98.31</u>	<u>95.87</u>
	SynTime-E	89.20	94.49	91.77	93.20	98.78	95.88

Difference from other Rule-based Methods

Method	SynTime	Other rule-based methods		
Layout	Rule levelGeneral Heuristic RulesType levelTime Token, Modifier, NumeralToken level1989, February, 12:55, this year, 3 months ago,	Rule level Token level 1989, February, 12:55, this year, 3 months ago,		
Property	Heuristic rules work on token types and are independent of specific tokens, thus they are independent of specific domains and specific text types and specific languages.	Deterministic rules directly work on tokens and phrases in a fixed manner, thus the taggers lack flexibility		
Example	Heuristic Rules PREFIX NUMERAL TIME_UNIT PREFIX YEAR the third quarter of 1984	/the/? [{tag:JJ}]? (\$NUM_ORD) /-/? [{tag:JJ}]? /quarter/		

A simple idea

Rules can be designed with generality and heuristics

