Time Expression Recognition
Using a Constituent-based Tagging Scheme

Xiaoshi Zhong and Erik Cambria
Nanyang Technological University
{xszhong, cambria}@ntu.edu.sg
Outline

• Time expression analysis
 • Datasets: TimeBank, Gigaword, WikiWars, Tweets
 • Findings: loose structure, differentiable

• Time expression recognition
 • TOMN: a constituent-based tagging scheme
 • Baselines: HeidelTime, SUTime, SynTime, ClearTK, UWTime
 • Datasets: TE-3, WikiWars, Tweets
Time Expression - Examples

Today
Friday
September
Last week
2 years ago
September 2006
2006 September
January 30, 1998
1 September 2006
the third quarter of 1984
Time Expression - Constituents

- Time token
 - Explicitly express time information

- Modifier
 - Modify time tokens

- Numeral
 - Numbers and ordinals (except year)

Today
Friday
September
Last week
2 years ago
September 2006
2006 September
January 30, 1998
1 September 2006
the third quarter of 1984
Time Expression - Constituents

- **Time token**
 - Explicitly express time information
- **Modifier**
 - Modify time tokens
- **Numeral**
 - Numbers and ordinals (except year)

Today
Friday
September
Last week
2 years ago
September 2006
2006 September
January 30, 1998
1 September 2006
the third quarter of 1984
Time Expression - Constituents

- **Time token**
 - Explicitly express time information

- **Modifier**
 - Modify time tokens

- **Numeral**
 - Numbers and ordinals (except year)

Today
Friday
September
Last week
2 years ago
September 2006
2006 September
January 30, 1998
1 September 2006
the third quarter of 1984
Time Expression - Constituents

- **Time token**
 - Explicitly express time information

- **Modifier**
 - Modify time tokens

- **Numeral**
 - Numbers and ordinals (except year)

Today
Friday
September
Last week
2 years ago
September 2006
2006 September
January 30, 1998
1 September 2006
the third quarter of 1984
Time Expression Analysis

• Datasets
 • TimeBank
 • Gigaword
 • WikiWars
 • Tweets

• Findings
 • Loose structure
 • Differentiable
Time Expression Analysis - Datasets

• Datasets
 • TimeBank: a benchmark dataset used in TempEval evaluations
 • Gigaword: a large dataset with automatically generated labels
 • WikiWars: a war domain dataset collected from Wikipedia
 • Tweets: a tweet dataset collected from Twitter

• Dataset statistics

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#Docs</th>
<th>#Words</th>
<th>#Timex</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimeBank</td>
<td>183</td>
<td>61,418</td>
<td>1,243</td>
</tr>
<tr>
<td>Gigaword</td>
<td>2,452</td>
<td>666,309</td>
<td>12,739</td>
</tr>
<tr>
<td>WikiWars</td>
<td>22</td>
<td>119,468</td>
<td>2,671</td>
</tr>
<tr>
<td>Tweets</td>
<td>942</td>
<td>18,199</td>
<td>1,127</td>
</tr>
</tbody>
</table>

The datasets differ in size, source, domain, and text type, but their time expressions demonstrate similar characteristics.
Time Expression Analysis - Finding 1

- **Loose structure**: time expressions are formed by loose structure
Time Expression Analysis - Finding 1

- **Loose structure**: time expressions are formed by loose structure
 - Loose collocation
 - September
 - September 2006
 - 1 September 2006
 - Exchangeable order
 - September 2006
 - 2006 September
Time Expression Analysis - Finding 1

- **Loose structure**: time expressions are formed by loose structure
 - Loose collocation
 - September/B
 - September/B 2006/I
 - 1/B September/I 2006/I
 - Exchangeable order
 - September/B 2006/I
 - 2006/B September/I

In perspective of position within time expressions, under BIO scheme, ‘September’ may appear as (i) **Beginning** or (ii) **Inside** word of time expressions.
Time Expression Analysis - Finding 1

- **Loose structure**: time expressions are formed by loose structure
 - Loose collocation
 - September/U
 - September/B 2006/L
 - 1/B September/I 2006/L
 - Exchangeable order
 - September/B 2006/L
 - 2006/B September/L

Under BILOU scheme, ‘September’ may appear as
(1) Unit-word time expressions, (2) Beginning, (3) Inside, or (4) Last word of time expressions
Time Expression Analysis - Finding 1

- **Loose structure**: time expressions are formed by loose structure

Percentage of distinct time tokens and modifiers that appear in _different positions_ within time expressions

<table>
<thead>
<tr>
<th>Dataset</th>
<th>BIO Scheme</th>
<th></th>
<th></th>
<th>BILOU Scheme</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time Token</td>
<td>Modifier</td>
<td></td>
<td>Time Token</td>
<td>Modifier</td>
<td></td>
</tr>
<tr>
<td>TimeBank</td>
<td>58.18</td>
<td>33.33</td>
<td></td>
<td>63.64</td>
<td>33.33</td>
<td></td>
</tr>
<tr>
<td>Gigaword</td>
<td>61.29</td>
<td>45.83</td>
<td></td>
<td>77.05</td>
<td>46.00</td>
<td></td>
</tr>
<tr>
<td>WikiWars</td>
<td>53.57</td>
<td>26.19</td>
<td></td>
<td>61.40</td>
<td>29.55</td>
<td></td>
</tr>
<tr>
<td>Tweets</td>
<td>67.21</td>
<td>27.59</td>
<td></td>
<td>72.58</td>
<td>27.59</td>
<td></td>
</tr>
</tbody>
</table>
Time Expression Analysis - Finding 2

- **Differentiable**: time tokens can differentiate time expressions from common text
Time Expression Analysis - Finding 2

- **Differentiable**: time tokens can differentiate time expressions from common text

Percentage of time expression’s constituents that appear in time expressions (P_{timex}) and in common text (P_{text})

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Time Token</th>
<th></th>
<th>Modifier</th>
<th></th>
<th>Numeral</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P_{timex}</td>
<td>P_{text}</td>
<td>P_{timex}</td>
<td>P_{text}</td>
<td>P_{timex}</td>
<td>P_{text}</td>
</tr>
<tr>
<td>TimeBank</td>
<td>94.61</td>
<td>0.34</td>
<td>47.39</td>
<td>22.56</td>
<td>22.61</td>
<td>3.16</td>
</tr>
<tr>
<td>Gigaword</td>
<td>96.44</td>
<td>0.65</td>
<td>28.05</td>
<td>22.82</td>
<td>20.24</td>
<td>2.03</td>
</tr>
<tr>
<td>WikiWars</td>
<td>91.81</td>
<td>0.14</td>
<td>31.64</td>
<td>26.14</td>
<td>38.01</td>
<td>9.82</td>
</tr>
<tr>
<td>Tweets</td>
<td>96.01</td>
<td>0.50</td>
<td>21.38</td>
<td>13.03</td>
<td>18.81</td>
<td>0.128</td>
</tr>
</tbody>
</table>

$$P_{timex}(T) = \frac{\# \text{timex that contain } T}{\# \text{total timex}}$$ $$P_{text}(T) = \frac{\# \text{tokens that are } T}{\# \text{total tokens}}$$
Fundamental Problem - Inconsistent Tag Assignment

• Position-based tagging scheme
 • BIO scheme: Beginning or Inside word of time expressions, Outside time expressions
 • BILOU scheme: Unit-word time expressions, Beginning, Inside, Last word of multi-word time expressions, Outside time expressions

• Inconsistent tag assignment
 • During training, a word is assigned with different tags simply because the word appears in different positions within labeled chunks
Inconsistent Tag Assignment

• Position-based tagging scheme
 • BILOU scheme: Unit-word time expressions, Beginning, Inside, Last word of multi-word time expressions, Outside time expressions
Inconsistent Tag Assignment

• Position-based tagging scheme
 • BILOU scheme: Unit-word time expressions, Beginning, Inside, Last word of multi-word time expressions, Outside time expressions

1) September/U 2) September/B 2006/L
3) 2006/B September/L 4) 1/B September/I 2006/L
Inconsistent Tag Assignment

• Position-based tagging scheme
 • BILOU scheme: Unit-word time expressions, Beginning, Inside, Last word of multi-word time expressions, Outside time expressions

1) September/U 2) September/B 2006/L
3) 2006/B September/L 4) 1/B September/I 2006/L

1) (…, w=September, …, U)
2) (…, w=September, …, B)
3) (…, w=September, …, L)
4) (…, w=September, …, I)
Inconsistent Tag Assignment

- Position-based tagging scheme
 - BILOU scheme: Unit-word time expressions, Beginning, Inside, Last word of multi-word time expressions, Outside time expressions

1) September/U
2) September/B 2006/L
3) 2006/B September/L
4) 1/B September/I 2006/L

1) (…, w=September, …, U)
2) (…, w=September, …, B)
3) (…, w=September, …, L)
4) (…, w=September, …, I)

Inconsistent tag assignment reduces the predictive power of ‘September’

This contradicts finding 2 that time tokens can differentiate time expressions from common text.
Review

• Two findings
 • Finding 1: time expressions are formed by loose structure
 • Finding 2: time tokens can differentiate time expressions from common text

• Finding 1 leads BILOU scheme to inconsistent tag assignment
 • Reduce the predictive power of time tokens

1) September/U 2) September/B 2006/L
3) 2006/B September/L 4) 1/B September/I 2006/L

• Under BILOU scheme, Finding 1 contradicts Finding 2
Overcome Inconsistent Tag Assignment

• Constituent-based tagging scheme
 • TOMN scheme: Time token, Modifier, Numeral, Outside time expressions
 • TOMN scheme assigns a word with a tag according to its constituent role
Overcome Inconsistent Tag Assignment

• Constituent-based tagging scheme
 • TOMN scheme: Time token, Modifier, Numeral, Outside time expressions
 • TOMN scheme assigns a word with a tag according to its constituent role

1) September/T 2) September/T 2006/T
3) 2006/T September/T 4) 1/N September/T 2006/T
Overcome Inconsistent Tag Assignment

• Constituent-based tagging scheme
 • TOMN scheme: Time token, Modifier, Numeral, Outside time expressions
 • TOMN scheme assigns a word with a tag according to its constituent role

1) September/T 2) September/T 2006/T
3) 2006/T September/T 4) 1/N September/T 2006/T

1) (..., w=September, ..., T)
2) (..., w=September, ..., T)
3) (..., w=September, ..., T)
4) (..., w=September, ..., T)
Overcome Inconsistent Tag Assignment

• Constituent-based tagging scheme
 • TOMN scheme: Time token, Modifier, Numeral, Outside time expressions
 • TOMN scheme assigns a word with a tag according to its constituent role

1) September/T 2) September/T 2006/T
3) 2006/T September/T 4) 1/N September/T 2006/T

1) (…, w=September, …, T) 2) (…, w=September, …, T) Consistent tag assignment protects
3) (…, w=September, …, T) 4) (…, w=September, …, T) ‘September’s predictive power
Time Expression Recognition - TOMN

TOMN scheme

A set of token regular expressions

TOMN scheme

T (time token)
M (modifier)
N (numeral)
O (outside timex)

TOMN Scheme

Time Token
Modifier
Numeral

TmnRegex

Feature Extractor

Raw Text

TOMN Pre-tag Features
Lemma Features

CRFs-based Tagger

Annotated Text

CRFs framework
Time Expression Recognition - Examples

• Non-O words that appear together form a time expression

On/o September/T 1/N ,/M 1939/T ,/O … state/O in/o 1939/T ./O

... in/o a/M few/M days/T and/M weeks/T respectively/O ./O
Time Expression Recognition - Experiments

• Our method: TOMN

• Baselines
 • HeidelTime: rule-based
 • SUTime: rule-based
 • SynTime: type-based
 • ClearTK: learning-based
 • UWTime: learning-based

• Datasets
 • TE-3, WikiWars, Tweets
Performance of TOMN and baselines. **Best results** are in boldface and **second best** are underlined.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>Strict Match</th>
<th></th>
<th></th>
<th>Relaxed Match</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pr.</td>
<td>Re.</td>
<td>F1</td>
<td>Pr.</td>
<td>Re.</td>
<td>F1</td>
</tr>
<tr>
<td>TE-3</td>
<td>HeidelTime (Strotgen et al., 2013)</td>
<td>83.85</td>
<td>78.99</td>
<td>81.34</td>
<td>93.08</td>
<td>87.68</td>
<td>90.30</td>
</tr>
<tr>
<td></td>
<td>SUTime (Chang and Manning, 2013)</td>
<td>78.72</td>
<td>80.43</td>
<td>79.57</td>
<td>89.36</td>
<td>91.30</td>
<td>90.32</td>
</tr>
<tr>
<td></td>
<td>SynTime (Zhong et al., 2017)</td>
<td>91.43</td>
<td>92.75</td>
<td>92.09</td>
<td>94.29</td>
<td>95.65</td>
<td>94.96</td>
</tr>
<tr>
<td></td>
<td>ClearTK (Bethard, 2013)</td>
<td>85.90</td>
<td>79.70</td>
<td>82.70</td>
<td>93.75</td>
<td>86.96</td>
<td>90.23</td>
</tr>
<tr>
<td></td>
<td>UWTime (Lee et al., 2014)</td>
<td>86.10</td>
<td>80.40</td>
<td>83.10</td>
<td>94.60</td>
<td>88.40</td>
<td>91.40</td>
</tr>
<tr>
<td></td>
<td>TOMN</td>
<td>92.59</td>
<td>90.58</td>
<td>91.58</td>
<td>95.56</td>
<td>93.48</td>
<td>94.51</td>
</tr>
<tr>
<td>WikiWars</td>
<td>HeidelTime (Strotgen et al., 2013)</td>
<td>88.20</td>
<td>78.50</td>
<td>83.10</td>
<td>95.80</td>
<td>85.40</td>
<td>90.30</td>
</tr>
<tr>
<td></td>
<td>SUTime</td>
<td>78.61</td>
<td>76.69</td>
<td>76.64</td>
<td>95.74</td>
<td>89.57</td>
<td>92.55</td>
</tr>
<tr>
<td></td>
<td>SynTime (Zhong et al., 2017)</td>
<td>80.00</td>
<td>80.22</td>
<td>80.11</td>
<td>92.16</td>
<td>92.41</td>
<td>92.29</td>
</tr>
<tr>
<td></td>
<td>ClearTK</td>
<td>87.69</td>
<td>80.28</td>
<td>83.82</td>
<td>96.80</td>
<td>90.54</td>
<td>93.56</td>
</tr>
<tr>
<td></td>
<td>UWTime (Lee et al., 2014)</td>
<td>87.70</td>
<td>78.80</td>
<td>83.00</td>
<td>97.60</td>
<td>87.60</td>
<td>92.30</td>
</tr>
<tr>
<td></td>
<td>TOMN</td>
<td>84.57</td>
<td>80.48</td>
<td>82.47</td>
<td>96.23</td>
<td>92.35</td>
<td>94.25</td>
</tr>
<tr>
<td>Tweets</td>
<td>HeidelTime</td>
<td>91.67</td>
<td>74.26</td>
<td>82.05</td>
<td>96.88</td>
<td>78.48</td>
<td>86.71</td>
</tr>
<tr>
<td></td>
<td>SUTime</td>
<td>77.69</td>
<td>79.32</td>
<td>78.50</td>
<td>88.84</td>
<td>90.72</td>
<td>89.77</td>
</tr>
<tr>
<td></td>
<td>SynTime (Zhong et al., 2017)</td>
<td>89.52</td>
<td>94.07</td>
<td>91.74</td>
<td>93.55</td>
<td>98.31</td>
<td>95.87</td>
</tr>
<tr>
<td></td>
<td>ClearTK</td>
<td>86.83</td>
<td>75.11</td>
<td>80.54</td>
<td>96.59</td>
<td>83.54</td>
<td>89.59</td>
</tr>
<tr>
<td></td>
<td>UWTime</td>
<td>88.36</td>
<td>70.76</td>
<td>78.59</td>
<td>97.88</td>
<td>78.39</td>
<td>87.06</td>
</tr>
<tr>
<td></td>
<td>TOMN</td>
<td>90.69</td>
<td>94.51</td>
<td>92.56</td>
<td>93.52</td>
<td>97.47</td>
<td>95.45</td>
</tr>
</tbody>
</table>
Performance of TOMN and baselines. **Best results** are in boldface and **second best** are underlined.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>Strict Match</th>
<th></th>
<th>Relexed Match</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pr.</td>
<td>Re.</td>
<td>F1</td>
<td>Pr.</td>
</tr>
<tr>
<td>TE-3</td>
<td>HeidelTime (Strotgen et al., 2013)</td>
<td>83.85</td>
<td>78.99</td>
<td>81.34</td>
<td>93.08</td>
</tr>
<tr>
<td></td>
<td>SUTime (Chang and Manning, 2013)</td>
<td>78.72</td>
<td>80.43</td>
<td>79.57</td>
<td>89.36</td>
</tr>
<tr>
<td></td>
<td>SynTime (Zhong et al., 2017)</td>
<td>91.43</td>
<td>92.75</td>
<td>92.09</td>
<td>94.29</td>
</tr>
<tr>
<td></td>
<td>ClearTK (Bethard, 2013)</td>
<td>85.90</td>
<td>79.70</td>
<td>82.70</td>
<td>93.75</td>
</tr>
<tr>
<td></td>
<td>UWTime (Lee et al., 2014)</td>
<td>86.10</td>
<td>80.40</td>
<td>83.10</td>
<td>94.60</td>
</tr>
<tr>
<td></td>
<td>TOMN</td>
<td>92.59</td>
<td>90.58</td>
<td>91.58</td>
<td>95.56</td>
</tr>
<tr>
<td>WikiWars</td>
<td>HeidelTime (Strotgen et al., 2013)</td>
<td>88.20</td>
<td>78.50</td>
<td>83.10</td>
<td>95.80</td>
</tr>
<tr>
<td></td>
<td>SUTime</td>
<td>78.61</td>
<td>76.69</td>
<td>76.64</td>
<td>95.74</td>
</tr>
<tr>
<td></td>
<td>SynTime (Zhong et al., 2017)</td>
<td>80.00</td>
<td>80.22</td>
<td>80.11</td>
<td>92.16</td>
</tr>
<tr>
<td></td>
<td>ClearTK</td>
<td>87.69</td>
<td>80.28</td>
<td>83.82</td>
<td>96.80</td>
</tr>
<tr>
<td></td>
<td>UWTime (Lee et al., 2014)</td>
<td>87.70</td>
<td>78.80</td>
<td>83.00</td>
<td>97.60</td>
</tr>
<tr>
<td></td>
<td>TOMN</td>
<td>84.57</td>
<td>80.48</td>
<td>82.47</td>
<td>96.23</td>
</tr>
<tr>
<td>Tweets</td>
<td>HeidelTime</td>
<td>91.67</td>
<td>74.26</td>
<td>82.05</td>
<td>96.88</td>
</tr>
<tr>
<td></td>
<td>SUTime</td>
<td>77.69</td>
<td>79.32</td>
<td>78.50</td>
<td>88.84</td>
</tr>
<tr>
<td></td>
<td>SynTime (Zhong et al., 2017)</td>
<td>89.52</td>
<td>94.07</td>
<td>91.74</td>
<td>93.55</td>
</tr>
<tr>
<td></td>
<td>ClearTK</td>
<td>86.83</td>
<td>75.11</td>
<td>80.54</td>
<td>96.59</td>
</tr>
<tr>
<td></td>
<td>UWTime</td>
<td>88.36</td>
<td>70.76</td>
<td>78.59</td>
<td>97.88</td>
</tr>
<tr>
<td></td>
<td>TOMN</td>
<td>90.69</td>
<td>94.51</td>
<td>92.56</td>
<td>93.52</td>
</tr>
</tbody>
</table>
Time Expression Recognition - Experiments

• Cross-dataset experiments
 • Train on one dataset’s training set
 • Test on other datasets’ test sets

• Learning-based baselines
 • ClearTK
 • UWTime

• Datasets
 • TE-3
 • WikiWars
 • Tweets
Cross-dataset performance on test set of TE-3
(Color background indicates single-dataset results)

Training Set	Method	Strict Match			Relexed Match						
		Pr.	Re.	F1	Pr.	Re.	F1				
TE-3	ClearTK	85.90	79.70	82.70	93.75	86.96	90.23				
	UWTIme	86.10	80.40	83.10	94.60	88.40	91.40				
	TOMN	**92.59**	**90.58**	**91.58**	**95.56**	**93.48**	**94.51**				
WikiWars	ClearTK	65.67	63.77	64.71	87.31	84.78	86.03				
	UWTIme	76.92	72.46	74.63	88.46	83.33	85.82				
	TOMN	**84.06**	**84.06**	**84.06**	**93.48**	**93.48**	**93.48**				
Tweets	ClearTK	72.59	71.01	71.79	**93.33**	91.30	92.31				
	UWTIme	80.00	72.46	76.05	92.80	84.06	88.21				
	TOMN	**85.42**	**89.13**	**87.23**	91.67	**95.65**	**93.62**				
Cross-dataset performance on test set of WikiWars

<table>
<thead>
<tr>
<th>Training Set</th>
<th>Method</th>
<th>Strict Match</th>
<th></th>
<th></th>
<th>Relexed Match</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pr.</td>
<td>Re.</td>
<td>F1</td>
<td>Pr.</td>
<td>Re.</td>
<td>F1</td>
</tr>
<tr>
<td>TE-3</td>
<td>ClearTK</td>
<td>74.38</td>
<td>60.76</td>
<td>66.89</td>
<td>97.54</td>
<td>79.68</td>
<td>87.71</td>
</tr>
<tr>
<td></td>
<td>UWTIme</td>
<td>87.01</td>
<td>79.34</td>
<td>83.00</td>
<td>96.07</td>
<td>87.60</td>
<td>91.64</td>
</tr>
<tr>
<td></td>
<td>TOMN</td>
<td>82.18</td>
<td>75.65</td>
<td>79.07</td>
<td>96.26</td>
<td>87.93</td>
<td>91.90</td>
</tr>
<tr>
<td>WikiWars</td>
<td>ClearTK</td>
<td>87.69</td>
<td>80.28</td>
<td>83.82</td>
<td>96.80</td>
<td>90.54</td>
<td>93.56</td>
</tr>
<tr>
<td></td>
<td>UWTIme</td>
<td>87.70</td>
<td>78.80</td>
<td>83.00</td>
<td>97.60</td>
<td>87.60</td>
<td>92.30</td>
</tr>
<tr>
<td></td>
<td>TOMN</td>
<td>84.57</td>
<td>80.48</td>
<td>82.47</td>
<td>96.23</td>
<td>92.35</td>
<td>94.25</td>
</tr>
<tr>
<td>Tweets</td>
<td>ClearTK</td>
<td>57.75</td>
<td>54.73</td>
<td>56.20</td>
<td>91.93</td>
<td>87.12</td>
<td>89.46</td>
</tr>
<tr>
<td></td>
<td>UWTIme</td>
<td>80.28</td>
<td>62.81</td>
<td>70.48</td>
<td>94.37</td>
<td>73.83</td>
<td>82.84</td>
</tr>
<tr>
<td></td>
<td>TOMN</td>
<td>60.29</td>
<td>66.00</td>
<td>63.02</td>
<td>84.74</td>
<td>92.76</td>
<td>88.57</td>
</tr>
</tbody>
</table>
Cross-dataset performance on test set of Tweets

<table>
<thead>
<tr>
<th>Training Set</th>
<th>Method</th>
<th>Strict Match</th>
<th></th>
<th>Relexed Match</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pr.</td>
<td>Re.</td>
<td>F1</td>
</tr>
<tr>
<td>TE-3</td>
<td>ClearTK</td>
<td>81.16</td>
<td>47.26</td>
<td>59.73</td>
</tr>
<tr>
<td></td>
<td>UWTIme</td>
<td>89.66</td>
<td>65.82</td>
<td>75.91</td>
</tr>
<tr>
<td></td>
<td>TOMN</td>
<td>92.92</td>
<td>88.61</td>
<td>90.71</td>
</tr>
<tr>
<td>WikiWars</td>
<td>ClearTK</td>
<td>72.48</td>
<td>45.57</td>
<td>55.96</td>
</tr>
<tr>
<td></td>
<td>UWTIme</td>
<td>87.43</td>
<td>61.60</td>
<td>72.28</td>
</tr>
<tr>
<td></td>
<td>TOMN</td>
<td>85.00</td>
<td>86.08</td>
<td>85.53</td>
</tr>
<tr>
<td>Tweets</td>
<td>ClearTK</td>
<td>86.83</td>
<td>75.11</td>
<td>80.54</td>
</tr>
<tr>
<td></td>
<td>UWTIme</td>
<td>88.36</td>
<td>70.76</td>
<td>78.59</td>
</tr>
<tr>
<td></td>
<td>TOMN</td>
<td>90.69</td>
<td>94.51</td>
<td>92.56</td>
</tr>
</tbody>
</table>
Time Expression Recognition - Efficiency

• TOMN is more efficient

<table>
<thead>
<tr>
<th>Method</th>
<th>TE-3</th>
<th>WikiWars</th>
<th>Tweets</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClearTK</td>
<td>152</td>
<td>223</td>
<td>86</td>
</tr>
<tr>
<td>UWTTime</td>
<td>864</td>
<td>1,050</td>
<td>160</td>
</tr>
<tr>
<td>TOMN</td>
<td>36</td>
<td>48</td>
<td>42</td>
</tr>
</tbody>
</table>

Runtime of going through a whole process (unit: seconds)
Summary

• Have two findings
 • Loose structure
 • Differentiable

• Reveal a fundamental problem in position-based tagging scheme
 • Inconsistent tag assignment

• Define a constituent-based tagging scheme
 • Good results
 • Less time